43 Search Results for "R�dle, Roman"


Document
Epistemic and Topological Reasoning in Distributed Systems (Dagstuhl Seminar 23272)

Authors: Armando Castañeda, Hans van Ditmarsch, Roman Kuznets, Yoram Moses, and Ulrich Schmid

Published in: Dagstuhl Reports, Volume 13, Issue 7 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23272 "Epistemic and Topological Reasoning in Distributed Systems." The seminar brought together experts in combinatorial topology and epistemic logic interested in distributed systems, with the aim of exploring the directions that the recent interaction between those approaches can take, identifying challenges and opportunities.

Cite as

Armando Castañeda, Hans van Ditmarsch, Roman Kuznets, Yoram Moses, and Ulrich Schmid. Epistemic and Topological Reasoning in Distributed Systems (Dagstuhl Seminar 23272). In Dagstuhl Reports, Volume 13, Issue 7, pp. 34-65, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{castaneda_et_al:DagRep.13.7.34,
  author =	{Casta\~{n}eda, Armando and van Ditmarsch, Hans and Kuznets, Roman and Moses, Yoram and Schmid, Ulrich},
  title =	{{Epistemic and Topological Reasoning in Distributed Systems (Dagstuhl Seminar 23272)}},
  pages =	{34--65},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{7},
  editor =	{Casta\~{n}eda, Armando and van Ditmarsch, Hans and Kuznets, Roman and Moses, Yoram and Schmid, Ulrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.7.34},
  URN =		{urn:nbn:de:0030-drops-197742},
  doi =		{10.4230/DagRep.13.7.34},
  annote =	{Keywords: combinatorial topology, distributed systems, epistemic logic, multi-agent systems, interpreted systems, dynamic epistemic logic, simplicial semantics, knowledge-based approach, distributed computing}
}
Document
The Produoidal Algebra of Process Decomposition

Authors: Matt Earnshaw, James Hefford, and Mario Román

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We characterize a universal normal produoidal category of monoidal contexts over an arbitrary monoidal category. In the same sense that a monoidal morphism represents a process, a monoidal context represents an incomplete process: a piece of a decomposition, possibly containing missing parts. In particular, symmetric monoidal contexts coincide with monoidal lenses and endow them with a novel universal property. We apply this algebraic structure to the analysis of multi-party protocols in arbitrary theories of processes.

Cite as

Matt Earnshaw, James Hefford, and Mario Román. The Produoidal Algebra of Process Decomposition. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{earnshaw_et_al:LIPIcs.CSL.2024.25,
  author =	{Earnshaw, Matt and Hefford, James and Rom\'{a}n, Mario},
  title =	{{The Produoidal Algebra of Process Decomposition}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.25},
  URN =		{urn:nbn:de:0030-drops-196688},
  doi =		{10.4230/LIPIcs.CSL.2024.25},
  annote =	{Keywords: monoidal categories, profunctors, lenses, duoidal categories}
}
Document
A Many-Sorted Epistemic Logic for Chromatic Hypergraphs

Authors: Éric Goubault, Roman Kniazev, and Jérémy Ledent

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We propose a many-sorted modal logic for reasoning about knowledge in multi-agent systems. Our logic introduces a clear distinction between participating agents and the environment. This allows to express local properties of agents and global properties of worlds in a uniform way, as well as to talk about the presence or absence of agents in a world. The logic subsumes the standard epistemic logic and is a conservative extension of it. The semantics is given in chromatic hypergraphs, a generalization of chromatic simplicial complexes, which were recently used to model knowledge in distributed systems. We show that the logic is sound and complete with respect to the intended semantics. We also show a further connection of chromatic hypergraphs with neighborhood frames.

Cite as

Éric Goubault, Roman Kniazev, and Jérémy Ledent. A Many-Sorted Epistemic Logic for Chromatic Hypergraphs. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 30:1-30:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goubault_et_al:LIPIcs.CSL.2024.30,
  author =	{Goubault, \'{E}ric and Kniazev, Roman and Ledent, J\'{e}r\'{e}my},
  title =	{{A Many-Sorted Epistemic Logic for Chromatic Hypergraphs}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{30:1--30:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.30},
  URN =		{urn:nbn:de:0030-drops-196730},
  doi =		{10.4230/LIPIcs.CSL.2024.30},
  annote =	{Keywords: Modal logics, epistemic logics, multi-agent systems, hypergraphs}
}
Document
On the Inherent Anonymity of Gossiping

Authors: Rachid Guerraoui, Anne-Marie Kermarrec, Anastasiia Kucherenko, Rafael Pinot, and Sasha Voitovych

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
Detecting the source of a gossip is a critical issue, related to identifying patient zero in an epidemic, or the origin of a rumor in a social network. Although it is widely acknowledged that random and local gossip communications make source identification difficult, there exists no general quantification of the level of anonymity provided to the source. This paper presents a principled method based on ε-differential privacy to analyze the inherent source anonymity of gossiping for a large class of graphs. First, we quantify the fundamental limit of source anonymity any gossip protocol can guarantee in an arbitrary communication graph. In particular, our result indicates that when the graph has poor connectivity, no gossip protocol can guarantee any meaningful level of differential privacy. This prompted us to further analyze graphs with controlled connectivity. We prove on these graphs that a large class of gossip protocols, namely cobra walks, offers tangible differential privacy guarantees to the source. In doing so, we introduce an original proof technique based on the reduction of a gossip protocol to what we call a random walk with probabilistic die out. This proof technique is of independent interest to the gossip community and readily extends to other protocols inherited from the security community, such as the Dandelion protocol. Interestingly, our tight analysis precisely captures the trade-off between dissemination time of a gossip protocol and its source anonymity.

Cite as

Rachid Guerraoui, Anne-Marie Kermarrec, Anastasiia Kucherenko, Rafael Pinot, and Sasha Voitovych. On the Inherent Anonymity of Gossiping. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{guerraoui_et_al:LIPIcs.DISC.2023.24,
  author =	{Guerraoui, Rachid and Kermarrec, Anne-Marie and Kucherenko, Anastasiia and Pinot, Rafael and Voitovych, Sasha},
  title =	{{On the Inherent Anonymity of Gossiping}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.24},
  URN =		{urn:nbn:de:0030-drops-191504},
  doi =		{10.4230/LIPIcs.DISC.2023.24},
  annote =	{Keywords: Gossip protocol, Source anonymity, Differential privacy}
}
Document
Short Paper
Progress in Constructing an Open Map Generalization Data Set for Deep Learning (Short Paper)

Authors: Cheng Fu, Zhiyong Zhou, Jan Winkler, Nicolas Beglinger, and Robert Weibel

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Recent pioneering works have shown the potential of a new deep-learning-backed paradigm for automated map generalization. However, this approach also puts a high demand on the availability of balanced and rich training sets. We present our design and progress of constructing an open training data set that can support relevant studies, collaborating with the Swiss Federal Office of Topography. The proposed data set will contain transitions of building and road generalization in Swiss maps at 1:25k, 1:50k, and 1:100k. By analyzing the generalization operators involved in these transitions, we also propose several challenges that can benefit from our proposed data set. Besides, we hope to also stimulate the production of further open data sets for deep-learning-backed map generalization.

Cite as

Cheng Fu, Zhiyong Zhou, Jan Winkler, Nicolas Beglinger, and Robert Weibel. Progress in Constructing an Open Map Generalization Data Set for Deep Learning (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 30:1-30:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.GIScience.2023.30,
  author =	{Fu, Cheng and Zhou, Zhiyong and Winkler, Jan and Beglinger, Nicolas and Weibel, Robert},
  title =	{{Progress in Constructing an Open Map Generalization Data Set for Deep Learning}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{30:1--30:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.30},
  URN =		{urn:nbn:de:0030-drops-189257},
  doi =		{10.4230/LIPIcs.GIScience.2023.30},
  annote =	{Keywords: open data, deep learning, map generalization}
}
Document
Roman Census: Enumerating and Counting Roman Dominating Functions on Graph Classes

Authors: Faisal N. Abu-Khzam, Henning Fernau, and Kevin Mann

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
The concept of Roman domination has recently been studied concerning enumerating and counting in F. N. Abu-Khzam et al. (WG 2022). More technically speaking, a function that assigns 0,1,2 to the vertices of an undirected graph is called a Roman dominating function if each vertex assigned zero has a neighbor assigned two. Such a function is called minimal if decreasing any assignment to any vertex would yield a function that is no longer a Roman dominating function. It has been shown that minimal Roman dominating functions can be enumerated with polynomial delay, i.e., between any two outputs of a solution, no more than polynomial time will elapse. This contrasts what is known about minimal dominating sets, where the question whether or not these can be enumerated with polynomial delay is open for more than 40 years. This makes the concept of Roman domination rather special and interesting among the many variants of domination problems studied in the literature, as it has been shown for several of these variants that the question of enumerating minimal solutions is tightly linked to that of enumerating minimal dominating sets, see M. Kanté et al. in SIAM J. Disc. Math., 2014. The running time of the mentioned enumeration algorithm for minimal Roman dominating functions (Abu-Khzam et al., WG 2022) could be estimated as 𝒪(1.9332ⁿ) on general graphs of order n. Here, we focus on special graph classes, as has been also done for enumerating minimal dominating sets before. More specifically, for chordal graphs, we present an enumeration algorithm running in time 𝒪(1.8940ⁿ). It is unknown if this gives a tight bound on the maximum number of minimal Roman dominating functions in chordal graphs. For interval graphs, we can lower this time bound further to 𝒪(1.7321ⁿ), which also matches the known lower bound concerning the maximum number of minimal Roman dominating functions. We can also provide a matching lower and upper bound for forests, which is (incidentally) the same, namely 𝒪^*(√3ⁿ). Furthermore, we present an optimal enumeration algorithm running in time 𝒪^*(∛3ⁿ) for split graphs and for cobipartite graphs, i.e., we can also give a matching lower bound example for these graph classes. Hence, our enumeration algorithms for interval graphs, forests, split graphs and cobipartite graphs are all optimal. The importance of our results stems from the fact that, for other types of domination problems, optimal enumeration algorithms are not always found. Interestingly, we use a different form of analysis for the running times of our different algorithms, and the branchings had to be tailored and tweaked to obtain the intended optimality results. Our Roman dominating functions enumeration algorithm for trees and forests is distinctively different from the one for minimal dominating sets by Rote (SODA 2019).Our approach also allows to give concrete formulas for counting minimal Roman dominating functions on more concrete graph families like paths.

Cite as

Faisal N. Abu-Khzam, Henning Fernau, and Kevin Mann. Roman Census: Enumerating and Counting Roman Dominating Functions on Graph Classes. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 6:1-6:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abukhzam_et_al:LIPIcs.MFCS.2023.6,
  author =	{Abu-Khzam, Faisal N. and Fernau, Henning and Mann, Kevin},
  title =	{{Roman Census: Enumerating and Counting Roman Dominating Functions on Graph Classes}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{6:1--6:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.6},
  URN =		{urn:nbn:de:0030-drops-185400},
  doi =		{10.4230/LIPIcs.MFCS.2023.6},
  annote =	{Keywords: special graph classes, counting problems, enumeration problems, domination problems, Roman domination}
}
Document
String Diagrammatic Trace Theory

Authors: Matthew Earnshaw and Paweł Sobociński

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We extend the theory of formal languages in monoidal categories to the multi-sorted, symmetric case, and show how this theory permits a graphical treatment of topics in concurrency. In particular, we show that Mazurkiewicz trace languages are precisely symmetric monoidal languages over monoidal distributed alphabets. We introduce symmetric monoidal automata, which define the class of regular symmetric monoidal languages. Furthermore, we prove that Zielonka’s asynchronous automata coincide with symmetric monoidal automata over monoidal distributed alphabets. Finally, we apply the string diagrams for symmetric premonoidal categories to derive serializations of traces.

Cite as

Matthew Earnshaw and Paweł Sobociński. String Diagrammatic Trace Theory. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 43:1-43:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{earnshaw_et_al:LIPIcs.MFCS.2023.43,
  author =	{Earnshaw, Matthew and Soboci\'{n}ski, Pawe{\l}},
  title =	{{String Diagrammatic Trace Theory}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{43:1--43:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.43},
  URN =		{urn:nbn:de:0030-drops-185770},
  doi =		{10.4230/LIPIcs.MFCS.2023.43},
  annote =	{Keywords: symmetric monoidal categories, Mazurkiewicz traces, asynchronous automata}
}
Document
Interest Rate Rules in Decentralized Finance: Evidence from Compound

Authors: Amit Chaudhary, Roman Kozhan, and Ganesh Viswanath-Natraj

Published in: OASIcs, Volume 110, 4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022)


Abstract
We study the fundamentals of interest rate rules on the decentralized finance protocol Compound. Interest rates are set by the governance of the protocol, and are based on the utilization of an asset: which is the ratio of a cryptocurrency that is borrowed to its total supply in the protocol. We discuss factors that determine the slope parameters of interest rate rules. Slope parameters are typically higher for more volatile cryptocurrencies. We argue liquidation risk can explain the cross-sectional variation in interest rate rules. We also draw parallels between these rules to the demand for loanable funds in traditional money markets.

Cite as

Amit Chaudhary, Roman Kozhan, and Ganesh Viswanath-Natraj. Interest Rate Rules in Decentralized Finance: Evidence from Compound. In 4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022). Open Access Series in Informatics (OASIcs), Volume 110, pp. 5:1-5:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chaudhary_et_al:OASIcs.Tokenomics.2022.5,
  author =	{Chaudhary, Amit and Kozhan, Roman and Viswanath-Natraj, Ganesh},
  title =	{{Interest Rate Rules in Decentralized Finance: Evidence from Compound}},
  booktitle =	{4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022)},
  pages =	{5:1--5:6},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-274-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{110},
  editor =	{Amoussou-Guenou, Yackolley and Kiayias, Aggelos and Verdier, Marianne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Tokenomics.2022.5},
  URN =		{urn:nbn:de:0030-drops-184226},
  doi =		{10.4230/OASIcs.Tokenomics.2022.5},
  annote =	{Keywords: Cryptocurrency, decentralized finance lending protocols, monetary policy, stablecoins, governance token}
}
Document
Locally Checkable Problems Parameterized by Clique-Width

Authors: Narmina Baghirova, Carolina Lucía Gonzalez, Bernard Ries, and David Schindl

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We continue the study initiated by Bonomo-Braberman and Gonzalez in 2020 on r-locally checkable problems. We propose a dynamic programming algorithm that takes as input a graph with an associated clique-width expression and solves a 1-locally checkable problem under certain restrictions. We show that it runs in polynomial time in graphs of bounded clique-width, when the number of colors of the locally checkable problem is fixed. Furthermore, we present a first extension of our framework to global properties by taking into account the sizes of the color classes, and consequently enlarge the set of problems solvable in polynomial time with our approach in graphs of bounded clique-width. As examples, we apply this setting to show that, when parameterized by clique-width, the [k]-Roman domination problem is FPT, and the k-community problem, Max PDS and other variants are XP.

Cite as

Narmina Baghirova, Carolina Lucía Gonzalez, Bernard Ries, and David Schindl. Locally Checkable Problems Parameterized by Clique-Width. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{baghirova_et_al:LIPIcs.ISAAC.2022.31,
  author =	{Baghirova, Narmina and Gonzalez, Carolina Luc{\'\i}a and Ries, Bernard and Schindl, David},
  title =	{{Locally Checkable Problems Parameterized by Clique-Width}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.31},
  URN =		{urn:nbn:de:0030-drops-173167},
  doi =		{10.4230/LIPIcs.ISAAC.2022.31},
  annote =	{Keywords: locally checkable problem, clique-width, dynamic programming, coloring}
}
Document
Fundamentals of the MakerDAO Governance Token

Authors: Roman Kozhan and Ganesh Viswanath-Natraj

Published in: OASIcs, Volume 97, 3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021)


Abstract
We study the fundamentals governing the price of the MakerDAO governance token MKR. Governance tokens are minted in response to liquidations, and burned in response to growth in the system surplus. MKR tokens appreciate with an increase in system surplus and depreciate with a rise in systemic risk due to DAI liquidation spirals. We discuss incentive compatibility conditions that need to be satisfied for the protocol to maintain the DAI stablecoin peg.

Cite as

Roman Kozhan and Ganesh Viswanath-Natraj. Fundamentals of the MakerDAO Governance Token. In 3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021). Open Access Series in Informatics (OASIcs), Volume 97, pp. 11:1-11:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kozhan_et_al:OASIcs.Tokenomics.2021.11,
  author =	{Kozhan, Roman and Viswanath-Natraj, Ganesh},
  title =	{{Fundamentals of the MakerDAO Governance Token}},
  booktitle =	{3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021)},
  pages =	{11:1--11:5},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-220-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{97},
  editor =	{Gramoli, Vincent and Halaburda, Hanna and Pass, Rafael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Tokenomics.2021.11},
  URN =		{urn:nbn:de:0030-drops-159082},
  doi =		{10.4230/OASIcs.Tokenomics.2021.11},
  annote =	{Keywords: Cryptocurrency, monetary policy, stablecoins, governance token}
}
Document
PACE Solver Description
PACE Solver Description: PACA-JAVA

Authors: Jona Dirks, Mario Grobler, Roman Rabinovich, Yannik Schnaubelt, Sebastian Siebertz, and Maximilian Sonneborn

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
We describe PACA-JAVA, an algorithm for solving the cluster editing problem submitted for the exact track of the Parameterized Algorithms and Computational Experiments challenge (PACE) in 2021. The algorithm solves the cluster editing problem by applying data-reduction rules, performing a layout heuristic, local search, iterative ILP verification, and branch-and-bound. We implemented the algorithm in the scope of a student project at the University of Bremen.

Cite as

Jona Dirks, Mario Grobler, Roman Rabinovich, Yannik Schnaubelt, Sebastian Siebertz, and Maximilian Sonneborn. PACE Solver Description: PACA-JAVA. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 30:1-30:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dirks_et_al:LIPIcs.IPEC.2021.30,
  author =	{Dirks, Jona and Grobler, Mario and Rabinovich, Roman and Schnaubelt, Yannik and Siebertz, Sebastian and Sonneborn, Maximilian},
  title =	{{PACE Solver Description: PACA-JAVA}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{30:1--30:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.30},
  URN =		{urn:nbn:de:0030-drops-154138},
  doi =		{10.4230/LIPIcs.IPEC.2021.30},
  annote =	{Keywords: Cluster editing, parameterized complexity, PACE 2021}
}
Document
RANDOM
Singularity of Random Integer Matrices with Large Entries

Authors: Sankeerth Rao Karingula and Shachar Lovett

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We study the singularity probability of random integer matrices. Concretely, the probability that a random n × n matrix, with integer entries chosen uniformly from {-m,…,m}, is singular. This problem has been well studied in two regimes: large n and constant m; or large m and constant n. In this paper, we extend previous techniques to handle the regime where both n,m are large. We show that the probability that such a matrix is singular is m^{-cn} for some absolute constant c > 0. We also provide some connections of our result to coding theory.

Cite as

Sankeerth Rao Karingula and Shachar Lovett. Singularity of Random Integer Matrices with Large Entries. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{karingula_et_al:LIPIcs.APPROX/RANDOM.2021.33,
  author =	{Karingula, Sankeerth Rao and Lovett, Shachar},
  title =	{{Singularity of Random Integer Matrices with Large Entries}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.33},
  URN =		{urn:nbn:de:0030-drops-147260},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.33},
  annote =	{Keywords: Coding Theory, Random matrix theory, Singularity probability MDS codes, Error correction codes, Littlewood Offord, Fourier Analysis}
}
Document
Engineering MultiQueues: Fast Relaxed Concurrent Priority Queues

Authors: Marvin Williams, Peter Sanders, and Roman Dementiev

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Priority queues with parallel access are an attractive data structure for applications like prioritized online scheduling, discrete event simulation, or greedy algorithms. However, a classical priority queue constitutes a severe bottleneck in this context, leading to very small throughput. Hence, there has been significant interest in concurrent priority queues with relaxed semantics. We investigate the complementary quality criteria rank error (how close are deleted elements to the global minimum) and delay (for each element x, how many elements with lower priority are deleted before x). In this paper, we introduce MultiQueues as a natural approach to relaxed priority queues based on multiple sequential priority queues. Their naturally high theoretical scalability is further enhanced by using three orthogonal ways of batching operations on the sequential queues. Experiments indicate that MultiQueues present a very good performance-quality tradeoff and considerably outperform competing approaches in at least one of these aspects. We employ a seemingly paradoxical technique of "wait-free locking" that might be of more general interest to convert sequential data structures to relaxed concurrent data structures.

Cite as

Marvin Williams, Peter Sanders, and Roman Dementiev. Engineering MultiQueues: Fast Relaxed Concurrent Priority Queues. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 81:1-81:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{williams_et_al:LIPIcs.ESA.2021.81,
  author =	{Williams, Marvin and Sanders, Peter and Dementiev, Roman},
  title =	{{Engineering MultiQueues: Fast Relaxed Concurrent Priority Queues}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{81:1--81:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.81},
  URN =		{urn:nbn:de:0030-drops-146627},
  doi =		{10.4230/LIPIcs.ESA.2021.81},
  annote =	{Keywords: concurrent data structure, priority queues, randomized algorithms, wait-free locking}
}
Document
Track A: Algorithms, Complexity and Games
Automorphisms and Isomorphisms of Maps in Linear Time

Authors: Ken-ichi Kawarabayashi, Bojan Mohar, Roman Nedela, and Peter Zeman

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
A map is a 2-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that every face is homeomorphic to an open disc. An automorphism of a map can be thought of as a permutation of the vertices which preserves the vertex-edge-face incidences in the embedding. When the underlying surface is orientable, every automorphism of a map determines an angle-preserving homeomorphism of the surface. While it is conjectured that there is no "truly subquadratic" algorithm for testing map isomorphism for unconstrained genus, we present a linear-time algorithm for computing the generators of the automorphism group of a map, parametrized by the genus of the underlying surface. The algorithm applies a sequence of local reductions and produces a uniform map, while preserving the automorphism group. The automorphism group of the original map can be reconstructed from the automorphism group of the uniform map in linear time. We also extend the algorithm to non-orientable surfaces by making use of the antipodal double-cover.

Cite as

Ken-ichi Kawarabayashi, Bojan Mohar, Roman Nedela, and Peter Zeman. Automorphisms and Isomorphisms of Maps in Linear Time. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 86:1-86:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kawarabayashi_et_al:LIPIcs.ICALP.2021.86,
  author =	{Kawarabayashi, Ken-ichi and Mohar, Bojan and Nedela, Roman and Zeman, Peter},
  title =	{{Automorphisms and Isomorphisms of Maps in Linear Time}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{86:1--86:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.86},
  URN =		{urn:nbn:de:0030-drops-141558},
  doi =		{10.4230/LIPIcs.ICALP.2021.86},
  annote =	{Keywords: maps on surfaces, automorphisms, isomorphisms, algorithm}
}
Document
A General Kernelization Technique for Domination and Independence Problems in Sparse Classes

Authors: Carl Einarson and Felix Reidl

Published in: LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)


Abstract
We unify and extend previous kernelization techniques in sparse classes [Jochen Alber et al., 2004; Pilipczuk and Siebertz, 2018] by defining water lilies and show how they can be used in bounded expansion classes to construct linear bikernels for (r,c)-Dominating Set, (r,c)-Scattered Set, Total r-Domination, r-Roman Domination, and a problem we call (r,[λ,μ])-Domination (implying a bikernel for r-Perfect Code). At the cost of slightly changing the output graph class our bikernels can be turned into kernels. We also demonstrate how these constructions can be combined to create "multikernels", meaning graphs that represent kernels for multiple problems at once.

Cite as

Carl Einarson and Felix Reidl. A General Kernelization Technique for Domination and Independence Problems in Sparse Classes. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{einarson_et_al:LIPIcs.IPEC.2020.11,
  author =	{Einarson, Carl and Reidl, Felix},
  title =	{{A General Kernelization Technique for Domination and Independence Problems in Sparse Classes}},
  booktitle =	{15th International Symposium on Parameterized and Exact Computation (IPEC 2020)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-172-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{180},
  editor =	{Cao, Yixin and Pilipczuk, Marcin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.11},
  URN =		{urn:nbn:de:0030-drops-133142},
  doi =		{10.4230/LIPIcs.IPEC.2020.11},
  annote =	{Keywords: Dominating Set, Independence, Kernelization, Bounded Expansion}
}
  • Refine by Author
  • 8 Rabinovich, Roman
  • 7 Siebertz, Sebastian
  • 6 Kreutzer, Stephan
  • 4 Slowinski, Roman
  • 2 Greco, Salvatore
  • Show More...

  • Refine by Classification
  • 2 Applied computing
  • 2 Mathematics of computing → Graph algorithms
  • 2 Theory of computation
  • 2 Theory of computation → Categorical semantics
  • 2 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 3 Dominating Set
  • 2 Approximation Algorithms
  • 2 Bounded Expansion
  • 2 Cryptocurrency
  • 2 Kernelization
  • Show More...

  • Refine by Type
  • 43 document

  • Refine by Publication Year
  • 5 2023
  • 4 2017
  • 4 2019
  • 4 2020
  • 4 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail