2 Search Results for "Reiter, Michael K."


Document
Communication-Efficient BFT Using Small Trusted Hardware to Tolerate Minority Corruption

Authors: Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael K. Reiter

Published in: LIPIcs, Volume 253, 26th International Conference on Principles of Distributed Systems (OPODIS 2022)


Abstract
Agreement protocols for partially synchronous networks tolerate fewer than one-third Byzantine faults. If parties are equipped with trusted hardware that prevents equivocation, then fault tolerance can be improved to fewer than one-half Byzantine faults, but typically at the cost of increased communication complexity. In this work, we present results that use small trusted hardware without worsening communication complexity assuming the adversary controls a fraction of the network that is less than one-half. In particular, we show a version of HotStuff that retains linear communication complexity in each view, leveraging trusted hardware to tolerate a minority of corruptions. Our result uses expander graph techniques to achieve efficient communication in a manner that may be of independent interest.

Cite as

Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael K. Reiter. Communication-Efficient BFT Using Small Trusted Hardware to Tolerate Minority Corruption. In 26th International Conference on Principles of Distributed Systems (OPODIS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 253, pp. 24:1-24:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{yandamuri_et_al:LIPIcs.OPODIS.2022.24,
  author =	{Yandamuri, Sravya and Abraham, Ittai and Nayak, Kartik and Reiter, Michael K.},
  title =	{{Communication-Efficient BFT Using Small Trusted Hardware to Tolerate Minority Corruption}},
  booktitle =	{26th International Conference on Principles of Distributed Systems (OPODIS 2022)},
  pages =	{24:1--24:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-265-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{253},
  editor =	{Hillel, Eshcar and Palmieri, Roberto and Rivi\`{e}re, Etienne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2022.24},
  URN =		{urn:nbn:de:0030-drops-176448},
  doi =		{10.4230/LIPIcs.OPODIS.2022.24},
  annote =	{Keywords: communication complexity, consensus, trusted hardware}
}
Document
Towards bounded wait-free PASIS

Authors: Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and Jay J. Wylie

Published in: Dagstuhl Seminar Proceedings, Volume 6371, From Security to Dependability (2007)


Abstract
The PASIS read/write protocol implements a Byzantine fault-tolerant erasure-coded atomic register. The prototype PASIS storage system implementation provides excellent best-case performance. Writes require two round trips and contention- and failure-free reads require one. Unfortunately, even though writes and reads are wait-free in PASIS, Byzantine components can induce correct clients to perform an unbounded amount of work. In this extended abstract, we enumerate the avenues by which Byzantine servers and clients can induce correct clients to perform an unbounded amount of work in PASIS. We sketch extensions to the PASIS protocol and Lazy Verification that bound the amount of work Byzantine components can induce correct clients to perform. We believe that the extensions provide bounded wait-free reads and writes. We also believe that an implementation that incorporates these extensions will preserve the excellent best-case performance of the original PASIS prototype.

Cite as

Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and Jay J. Wylie. Towards bounded wait-free PASIS. In From Security to Dependability. Dagstuhl Seminar Proceedings, Volume 6371, pp. 1-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{abdelmalek_et_al:DagSemProc.06371.5,
  author =	{Abd-El-Malek, Michael and Ganger, Gregory R. and Goodson, Garth R. and Reiter, Michael K. and Wylie, Jay J.},
  title =	{{Towards bounded wait-free PASIS}},
  booktitle =	{From Security to Dependability},
  pages =	{1--4},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{6371},
  editor =	{Christian Cachin and Felix C. Freiling and Jaap-Henk Hoepman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06371.5},
  URN =		{urn:nbn:de:0030-drops-8488},
  doi =		{10.4230/DagSemProc.06371.5},
  annote =	{Keywords: Byzantine fault-tolerant, erasure-coded storage, bounded wait-free, non-skipping timestamps}
}
  • Refine by Author
  • 2 Reiter, Michael K.
  • 1 Abd-El-Malek, Michael
  • 1 Abraham, Ittai
  • 1 Ganger, Gregory R.
  • 1 Goodson, Garth R.
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Communication complexity

  • Refine by Keyword
  • 1 Byzantine fault-tolerant
  • 1 bounded wait-free
  • 1 communication complexity
  • 1 consensus
  • 1 erasure-coded storage
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2007
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail