21 Search Results for "Roth, Aaron"


Volume

LIPIcs, Volume 156

1st Symposium on Foundations of Responsible Computing (FORC 2020)

FORC 2020, June 1-3, 2020, Harvard University, Cambridge, MA, USA (Virtual Conference)

Editors: Aaron Roth

Document
HappyMap : A Generalized Multicalibration Method

Authors: Zhun Deng, Cynthia Dwork, and Linjun Zhang

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
Multicalibration is a powerful and evolving concept originating in the field of algorithmic fairness. For a predictor f that estimates the outcome y given covariates x, and for a function class C, multi-calibration requires that the predictor f(x) and outcome y are indistinguishable under the class of auditors in C. Fairness is captured by incorporating demographic subgroups into the class of functions C. Recent work has shown that, by enriching the class C to incorporate appropriate propensity re-weighting functions, multi-calibration also yields target-independent learning, wherein a model trained on a source domain performs well on unseen, future, target domains {(approximately) captured by the re-weightings.} Formally, multicalibration with respect to C bounds |𝔼_{(x,y)∼D}[c(f(x),x)⋅(f(x)-y)]| for all c ∈ C. In this work, we view the term (f(x)-y) as just one specific mapping, and explore the power of an enriched class of mappings. We propose s-Happy Multicalibration, a generalization of multi-calibration, which yields a wide range of new applications, including a new fairness notion for uncertainty quantification, a novel technique for conformal prediction under covariate shift, and a different approach to analyzing missing data, while also yielding a unified understanding of several existing seemingly disparate algorithmic fairness notions and target-independent learning approaches. We give a single HappyMap meta-algorithm that captures all these results, together with a sufficiency condition for its success.

Cite as

Zhun Deng, Cynthia Dwork, and Linjun Zhang. HappyMap : A Generalized Multicalibration Method. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 41:1-41:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{deng_et_al:LIPIcs.ITCS.2023.41,
  author =	{Deng, Zhun and Dwork, Cynthia and Zhang, Linjun},
  title =	{{HappyMap : A Generalized Multicalibration Method}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{41:1--41:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.41},
  URN =		{urn:nbn:de:0030-drops-175449},
  doi =		{10.4230/LIPIcs.ITCS.2023.41},
  annote =	{Keywords: algorithmic fairness, target-independent learning, transfer learning}
}
Document
Online Multivalid Learning: Means, Moments, and Prediction Intervals

Authors: Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, and Aaron Roth

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We present a general, efficient technique for providing contextual predictions that are "multivalid" in various senses, against an online sequence of adversarially chosen examples (x,y). This means that the resulting estimates correctly predict various statistics of the labels y not just marginally - as averaged over the sequence of examples - but also conditionally on x ∈ G for any G belonging to an arbitrary intersecting collection of groups 𝒢. We provide three instantiations of this framework. The first is mean prediction, which corresponds to an online algorithm satisfying the notion of multicalibration from [Hébert-Johnson et al., 2018]. The second is variance and higher moment prediction, which corresponds to an online algorithm satisfying the notion of mean-conditioned moment multicalibration from [Jung et al., 2021]. Finally, we define a new notion of prediction interval multivalidity, and give an algorithm for finding prediction intervals which satisfy it. Because our algorithms handle adversarially chosen examples, they can equally well be used to predict statistics of the residuals of arbitrary point prediction methods, giving rise to very general techniques for quantifying the uncertainty of predictions of black box algorithms, even in an online adversarial setting. When instantiated for prediction intervals, this solves a similar problem as conformal prediction, but in an adversarial environment and with multivalidity guarantees stronger than simple marginal coverage guarantees.

Cite as

Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, and Aaron Roth. Online Multivalid Learning: Means, Moments, and Prediction Intervals. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 82:1-82:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.ITCS.2022.82,
  author =	{Gupta, Varun and Jung, Christopher and Noarov, Georgy and Pai, Mallesh M. and Roth, Aaron},
  title =	{{Online Multivalid Learning: Means, Moments, and Prediction Intervals}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{82:1--82:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.82},
  URN =		{urn:nbn:de:0030-drops-156785},
  doi =		{10.4230/LIPIcs.ITCS.2022.82},
  annote =	{Keywords: Uncertainty Estimation, Calibration, Online Learning}
}
Document
Invited Talk
A User Friendly Power Tool for Deriving Online Learning Algorithms (Invited Talk)

Authors: Aaron Roth

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
In this talk, we overview a simple and user friendly framework developed in [Noarov et al., 2021] that can be used to derive online learning algorithms in a number of settings. In the core framework, at every round, an adaptive adversary introduces a new game, consisting of an action space for the learner, an action space for the adversary, and a vector valued objective function that is concave-convex in every coordinate. The learner and the adversary then play in this game. The learner’s goal is to play so as to minimize the maximum coordinate of the cumulative vector-valued loss. The resulting one-shot game is not concave-convex, and so the minimax theorem does not apply. Nevertheless we give a simple algorithm that can compete with the setting in which the adversary must announce their action first, with optimally diminishing regret. We demonstrate the power of our simple framework by using it to derive optimal bounds and algorithms across a variety of domains. This includes no regret learning: we can recover optimal algorithms and bounds for minimizing exernal regret, internal regret, adaptive regret, multigroup regret, subsequence regret, and permutation regret in the sleeping experts setting. It also includes (multi)calibration [Hébert-Johnson et al., 2018] and related notions: we are able to recover recently derived algorithms and bounds for online adversarial multicalibration [Gupta et al., 2021], mean conditioned moment multicalibration [Jung et al., 2021], and prediction interval multivalidity [Gupta et al., 2021]. Finally we use it to derive a new variant of Blackwell’s Approachability Theorem, which we term "Fast Polytope Approachability".

Cite as

Aaron Roth. A User Friendly Power Tool for Deriving Online Learning Algorithms (Invited Talk). In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{roth:LIPIcs.ESA.2021.2,
  author =	{Roth, Aaron},
  title =	{{A User Friendly Power Tool for Deriving Online Learning Algorithms}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.2},
  URN =		{urn:nbn:de:0030-drops-145835},
  doi =		{10.4230/LIPIcs.ESA.2021.2},
  annote =	{Keywords: Online Learning, Multicalibration, Multivalidity, Blackwell Approachability}
}
Document
An Algorithmic Framework for Fairness Elicitation

Authors: Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, and Zhiwei Steven Wu

Published in: LIPIcs, Volume 192, 2nd Symposium on Foundations of Responsible Computing (FORC 2021)


Abstract
We consider settings in which the right notion of fairness is not captured by simple mathematical definitions (such as equality of error rates across groups), but might be more complex and nuanced and thus require elicitation from individual or collective stakeholders. We introduce a framework in which pairs of individuals can be identified as requiring (approximately) equal treatment under a learned model, or requiring ordered treatment such as "applicant Alice should be at least as likely to receive a loan as applicant Bob". We provide a provably convergent and oracle efficient algorithm for learning the most accurate model subject to the elicited fairness constraints, and prove generalization bounds for both accuracy and fairness. This algorithm can also combine the elicited constraints with traditional statistical fairness notions, thus "correcting" or modifying the latter by the former. We report preliminary findings of a behavioral study of our framework using human-subject fairness constraints elicited on the COMPAS criminal recidivism dataset.

Cite as

Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, and Zhiwei Steven Wu. An Algorithmic Framework for Fairness Elicitation. In 2nd Symposium on Foundations of Responsible Computing (FORC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 192, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.FORC.2021.2,
  author =	{Jung, Christopher and Kearns, Michael and Neel, Seth and Roth, Aaron and Stapleton, Logan and Wu, Zhiwei Steven},
  title =	{{An Algorithmic Framework for Fairness Elicitation}},
  booktitle =	{2nd Symposium on Foundations of Responsible Computing (FORC 2021)},
  pages =	{2:1--2:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-187-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{192},
  editor =	{Ligett, Katrina and Gupta, Swati},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2021.2},
  URN =		{urn:nbn:de:0030-drops-138701},
  doi =		{10.4230/LIPIcs.FORC.2021.2},
  annote =	{Keywords: Fairness, Fairness Elicitation}
}
Document
Lexicographically Fair Learning: Algorithms and Generalization

Authors: Emily Diana, Wesley Gill, Ira Globus-Harris, Michael Kearns, Aaron Roth, and Saeed Sharifi-Malvajerdi

Published in: LIPIcs, Volume 192, 2nd Symposium on Foundations of Responsible Computing (FORC 2021)


Abstract
We extend the notion of minimax fairness in supervised learning problems to its natural conclusion: lexicographic minimax fairness (or lexifairness for short). Informally, given a collection of demographic groups of interest, minimax fairness asks that the error of the group with the highest error be minimized. Lexifairness goes further and asks that amongst all minimax fair solutions, the error of the group with the second highest error should be minimized, and amongst all of those solutions, the error of the group with the third highest error should be minimized, and so on. Despite its naturalness, correctly defining lexifairness is considerably more subtle than minimax fairness, because of inherent sensitivity to approximation error. We give a notion of approximate lexifairness that avoids this issue, and then derive oracle-efficient algorithms for finding approximately lexifair solutions in a very general setting. When the underlying empirical risk minimization problem absent fairness constraints is convex (as it is, for example, with linear and logistic regression), our algorithms are provably efficient even in the worst case. Finally, we show generalization bounds - approximate lexifairness on the training sample implies approximate lexifairness on the true distribution with high probability. Our ability to prove generalization bounds depends on our choosing definitions that avoid the instability of naive definitions.

Cite as

Emily Diana, Wesley Gill, Ira Globus-Harris, Michael Kearns, Aaron Roth, and Saeed Sharifi-Malvajerdi. Lexicographically Fair Learning: Algorithms and Generalization. In 2nd Symposium on Foundations of Responsible Computing (FORC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 192, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{diana_et_al:LIPIcs.FORC.2021.6,
  author =	{Diana, Emily and Gill, Wesley and Globus-Harris, Ira and Kearns, Michael and Roth, Aaron and Sharifi-Malvajerdi, Saeed},
  title =	{{Lexicographically Fair Learning: Algorithms and Generalization}},
  booktitle =	{2nd Symposium on Foundations of Responsible Computing (FORC 2021)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-187-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{192},
  editor =	{Ligett, Katrina and Gupta, Swati},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2021.6},
  URN =		{urn:nbn:de:0030-drops-138748},
  doi =		{10.4230/LIPIcs.FORC.2021.6},
  annote =	{Keywords: Fair Learning, Lexicographic Fairness, Online Learning, Game Theory}
}
Document
Pipeline Interventions

Authors: Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth, and Juba Ziani

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We introduce the pipeline intervention problem, defined by a layered directed acyclic graph and a set of stochastic matrices governing transitions between successive layers. The graph is a stylized model for how people from different populations are presented opportunities, eventually leading to some reward. In our model, individuals are born into an initial position (i.e. some node in the first layer of the graph) according to a fixed probability distribution, and then stochastically progress through the graph according to the transition matrices, until they reach a node in the final layer of the graph; each node in the final layer has a reward associated with it. The pipeline intervention problem asks how to best make costly changes to the transition matrices governing people’s stochastic transitions through the graph, subject to a budget constraint. We consider two objectives: social welfare maximization, and a fairness-motivated maximin objective that seeks to maximize the value to the population (starting node) with the least expected value. We consider two variants of the maximin objective that turn out to be distinct, depending on whether we demand a deterministic solution or allow randomization. For each objective, we give an efficient approximation algorithm (an additive FPTAS) for constant width networks. We also tightly characterize the "price of fairness" in our setting: the ratio between the highest achievable social welfare and the social welfare consistent with a maximin optimal solution. Finally we show that for polynomial width networks, even approximating the maximin objective to any constant factor is NP hard, even for networks with constant depth. This shows that the restriction on the width in our positive results is essential.

Cite as

Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth, and Juba Ziani. Pipeline Interventions. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arunachaleswaran_et_al:LIPIcs.ITCS.2021.8,
  author =	{Arunachaleswaran, Eshwar Ram and Kannan, Sampath and Roth, Aaron and Ziani, Juba},
  title =	{{Pipeline Interventions}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.8},
  URN =		{urn:nbn:de:0030-drops-135478},
  doi =		{10.4230/LIPIcs.ITCS.2021.8},
  annote =	{Keywords: Interventions for fairness, fairness in navigating life paths, social welfare, maximin welfare, budget-constrained optimization, hardness of approximation}
}
Document
Complete Volume
LIPIcs, Volume 156, FORC 2020, Complete Volume

Authors: Aaron Roth

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
LIPIcs, Volume 156, FORC 2020, Complete Volume

Cite as

1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 1-190, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{roth:LIPIcs.FORC.2020,
  title =	{{LIPIcs, Volume 156, FORC 2020, Complete Volume}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{1--190},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020},
  URN =		{urn:nbn:de:0030-drops-120157},
  doi =		{10.4230/LIPIcs.FORC.2020},
  annote =	{Keywords: LIPIcs, Volume 156, FORC 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Aaron Roth

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 0:i-0:viii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{roth:LIPIcs.FORC.2020.0,
  author =	{Roth, Aaron},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{0:i--0:viii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.0},
  URN =		{urn:nbn:de:0030-drops-120168},
  doi =		{10.4230/LIPIcs.FORC.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Efficient Candidate Screening Under Multiple Tests and Implications for Fairness

Authors: Lee Cohen, Zachary C. Lipton, and Yishay Mansour

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
When recruiting job candidates, employers rarely observe their underlying skill level directly. Instead, they must administer a series of interviews and/or collate other noisy signals in order to estimate the worker’s skill. Traditional economics papers address screening models where employers access worker skill via a single noisy signal. In this paper, we extend this theoretical analysis to a multi-test setting, considering both Bernoulli and Gaussian models. We analyze the optimal employer policy both when the employer sets a fixed number of tests per candidate and when the employer can set a dynamic policy, assigning further tests adaptively based on results from the previous tests. To start, we characterize the optimal policy when employees constitute a single group, demonstrating some interesting trade-offs. Subsequently, we address the multi-group setting, demonstrating that when the noise levels vary across groups, a fundamental impossibility emerges whereby we cannot administer the same number of tests, subject candidates to the same decision rule, and yet realize the same outcomes in both groups. We show that by subjecting members of noisier groups to more tests, we can equalize the confusion matrix entries across groups, seemingly eliminating any disparate impact concerning outcomes.

Cite as

Lee Cohen, Zachary C. Lipton, and Yishay Mansour. Efficient Candidate Screening Under Multiple Tests and Implications for Fairness. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.FORC.2020.1,
  author =	{Cohen, Lee and Lipton, Zachary C. and Mansour, Yishay},
  title =	{{Efficient Candidate Screening Under Multiple Tests and Implications for Fairness}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.1},
  URN =		{urn:nbn:de:0030-drops-120179},
  doi =		{10.4230/LIPIcs.FORC.2020.1},
  annote =	{Keywords: algorithmic fairness, random walk, inference}
}
Document
Metric Learning for Individual Fairness

Authors: Christina Ilvento

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
There has been much discussion concerning how "fairness" should be measured or enforced in classification. Individual Fairness [Dwork et al., 2012], which requires that similar individuals be treated similarly, is a highly appealing definition as it gives strong treatment guarantees for individuals. Unfortunately, the need for a task-specific similarity metric has prevented its use in practice. In this work, we propose a solution to the problem of approximating a metric for Individual Fairness based on human judgments. Our model assumes access to a human fairness arbiter who is free of explicit biases and possesses sufficient domain knowledge to evaluate similarity. Our contributions include definitions for metric approximation relevant for Individual Fairness, constructions for approximations from a limited number of realistic queries to the arbiter on a sample of individuals, and learning procedures to construct hypotheses for metric approximations which generalize to unseen samples under certain assumptions of learnability of distance threshold functions.

Cite as

Christina Ilvento. Metric Learning for Individual Fairness. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 2:1-2:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ilvento:LIPIcs.FORC.2020.2,
  author =	{Ilvento, Christina},
  title =	{{Metric Learning for Individual Fairness}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{2:1--2:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.2},
  URN =		{urn:nbn:de:0030-drops-120183},
  doi =		{10.4230/LIPIcs.FORC.2020.2},
  annote =	{Keywords: metric learning, individual fairness, fair machine learning}
}
Document
Recovering from Biased Data: Can Fairness Constraints Improve Accuracy?

Authors: Avrim Blum and Kevin Stangl

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
Multiple fairness constraints have been proposed in the literature, motivated by a range of concerns about how demographic groups might be treated unfairly by machine learning classifiers. In this work we consider a different motivation; learning from biased training data. We posit several ways in which training data may be biased, including having a more noisy or negatively biased labeling process on members of a disadvantaged group, or a decreased prevalence of positive or negative examples from the disadvantaged group, or both. Given such biased training data, Empirical Risk Minimization (ERM) may produce a classifier that not only is biased but also has suboptimal accuracy on the true data distribution. We examine the ability of fairness-constrained ERM to correct this problem. In particular, we find that the Equal Opportunity fairness constraint [Hardt et al., 2016] combined with ERM will provably recover the Bayes optimal classifier under a range of bias models. We also consider other recovery methods including re-weighting the training data, Equalized Odds, and Demographic Parity, and Calibration. These theoretical results provide additional motivation for considering fairness interventions even if an actor cares primarily about accuracy.

Cite as

Avrim Blum and Kevin Stangl. Recovering from Biased Data: Can Fairness Constraints Improve Accuracy?. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{blum_et_al:LIPIcs.FORC.2020.3,
  author =	{Blum, Avrim and Stangl, Kevin},
  title =	{{Recovering from Biased Data: Can Fairness Constraints Improve Accuracy?}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.3},
  URN =		{urn:nbn:de:0030-drops-120192},
  doi =		{10.4230/LIPIcs.FORC.2020.3},
  annote =	{Keywords: fairness in machine learning, equal opportunity, bias, machine learning}
}
Document
Can Two Walk Together: Privacy Enhancing Methods and Preventing Tracking of Users

Authors: Moni Naor and Neil Vexler

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
We present a new concern when collecting data from individuals that arises from the attempt to mitigate privacy leakage in multiple reporting: tracking of users participating in the data collection via the mechanisms added to provide privacy. We present several definitions for untrackable mechanisms, inspired by the differential privacy framework. Specifically, we define the trackable parameter as the log of the maximum ratio between the probability that a set of reports originated from a single user and the probability that the same set of reports originated from two users (with the same private value). We explore the implications of this new definition. We show how differentially private and untrackable mechanisms can be combined to achieve a bound for the problem of detecting when a certain user changed their private value. Examining Google’s deployed solution for everlasting privacy, we show that RAPPOR (Erlingsson et al. ACM CCS, 2014) is trackable in our framework for the parameters presented in their paper. We analyze a variant of randomized response for collecting statistics of single bits, Bitwise Everlasting Privacy, that achieves good accuracy and everlasting privacy, while only being reasonably untrackable, specifically grows linearly in the number of reports. For collecting statistics about data from larger domains (for histograms and heavy hitters) we present a mechanism that prevents tracking for a limited number of responses. We also present the concept of Mechanism Chaining, using the output of one mechanism as the input of another, in the scope of Differential Privacy, and show that the chaining of an ε₁-LDP mechanism with an ε₂-LDP mechanism is ln (e^{ε₁+ε₂} + 1)/(e^ε₁ + e^ε₂)-LDP and that this bound is tight.

Cite as

Moni Naor and Neil Vexler. Can Two Walk Together: Privacy Enhancing Methods and Preventing Tracking of Users. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{naor_et_al:LIPIcs.FORC.2020.4,
  author =	{Naor, Moni and Vexler, Neil},
  title =	{{Can Two Walk Together: Privacy Enhancing Methods and Preventing Tracking of Users}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.4},
  URN =		{urn:nbn:de:0030-drops-120205},
  doi =		{10.4230/LIPIcs.FORC.2020.4},
  annote =	{Keywords: Differential Privacy, Surveillance}
}
Document
Service in Your Neighborhood: Fairness in Center Location

Authors: Christopher Jung, Sampath Kannan, and Neil Lutz

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
When selecting locations for a set of centers, standard clustering algorithms may place unfair burden on some individuals and neighborhoods. We formulate a fairness concept that takes local population densities into account. In particular, given k centers to locate and a population of size n, we define the "neighborhood radius" of an individual i as the minimum radius of a ball centered at i that contains at least n/k individuals. Our objective is to ensure that each individual has a center that is within at most a small constant factor of her neighborhood radius. We present several theoretical results: We show that optimizing this factor is NP-hard; we give an approximation algorithm that guarantees a factor of at most 2 in all metric spaces; and we prove matching lower bounds in some metric spaces. We apply a variant of this algorithm to real-world address data, showing that it is quite different from standard clustering algorithms and outperforms them on our objective function and balances the load between centers more evenly.

Cite as

Christopher Jung, Sampath Kannan, and Neil Lutz. Service in Your Neighborhood: Fairness in Center Location. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.FORC.2020.5,
  author =	{Jung, Christopher and Kannan, Sampath and Lutz, Neil},
  title =	{{Service in Your Neighborhood: Fairness in Center Location}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.5},
  URN =		{urn:nbn:de:0030-drops-120215},
  doi =		{10.4230/LIPIcs.FORC.2020.5},
  annote =	{Keywords: Fairness, Clustering, Facility Location}
}
Document
Bias In, Bias Out? Evaluating the Folk Wisdom

Authors: Ashesh Rambachan and Jonathan Roth

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
We evaluate the folk wisdom that algorithmic decision rules trained on data produced by biased human decision-makers necessarily reflect this bias. We consider a setting where training labels are only generated if a biased decision-maker takes a particular action, and so "biased" training data arise due to discriminatory selection into the training data. In our baseline model, the more biased the decision-maker is against a group, the more the algorithmic decision rule favors that group. We refer to this phenomenon as bias reversal. We then clarify the conditions that give rise to bias reversal. Whether a prediction algorithm reverses or inherits bias depends critically on how the decision-maker affects the training data as well as the label used in training. We illustrate our main theoretical results in a simulation study applied to the New York City Stop, Question and Frisk dataset.

Cite as

Ashesh Rambachan and Jonathan Roth. Bias In, Bias Out? Evaluating the Folk Wisdom. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 6:1-6:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{rambachan_et_al:LIPIcs.FORC.2020.6,
  author =	{Rambachan, Ashesh and Roth, Jonathan},
  title =	{{Bias In, Bias Out? Evaluating the Folk Wisdom}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{6:1--6:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.6},
  URN =		{urn:nbn:de:0030-drops-120225},
  doi =		{10.4230/LIPIcs.FORC.2020.6},
  annote =	{Keywords: fairness, selective labels, discrimination, training data}
}
  • Refine by Author
  • 9 Roth, Aaron
  • 4 Jung, Christopher
  • 3 Dwork, Cynthia
  • 3 Ilvento, Christina
  • 3 Ligett, Katrina
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Machine learning theory
  • 3 Theory of computation → Algorithmic game theory and mechanism design
  • 3 Theory of computation → Theory of database privacy and security
  • 2 Computing methodologies → Machine learning
  • 2 Theory of computation
  • Show More...

  • Refine by Keyword
  • 3 Differential Privacy
  • 3 Online Learning
  • 3 algorithmic fairness
  • 2 Fairness
  • 2 fairness
  • Show More...

  • Refine by Type
  • 20 document
  • 1 volume

  • Refine by Publication Year
  • 14 2020
  • 4 2021
  • 1 2010
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail