2 Search Results for "Sabin, Manuel"


Document
Pseudorandomness and the Minimum Circuit Size Problem

Authors: Rahul Santhanam

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We explore the possibility of basing one-way functions on the average-case hardness of the fundamental Minimum Circuit Size Problem (MCSP[s]), which asks whether a Boolean function on n bits specified by its truth table has circuits of size s(n). 1) (Pseudorandomness from Zero-Error Average-Case Hardness) We show that for a given size function s, the following are equivalent: Pseudorandom distributions supported on strings describable by s(O(n))-size circuits exist; Hitting sets supported on strings describable by s(O(n))-size circuits exist; MCSP[s(O(n))] is zero-error average-case hard. Using similar techniques, we show that Feige’s hypothesis for random k-CNFs implies that there is a pseudorandom distribution (with constant error) supported entirely on satisfiable formulas. Underlying our results is a general notion of semantic sampling, which might be of independent interest. 2) (A New Conjecture) In analogy to a known universal construction of succinct hitting sets against arbitrary polynomial-size adversaries, we propose the Universality Conjecture: there is a universal construction of succinct pseudorandom distributions against arbitrary polynomial-size adversaries. We show that under the Universality Conjecture, the following are equivalent: One-way functions exist; Natural proofs useful against sub-exponential size circuits do not exist; Learning polynomial-size circuits with membership queries over the uniform distribution is hard; MCSP[2^(ε n)] is zero-error hard on average for some ε > 0; Cryptographic succinct hitting set generators exist. 3) (Non-Black-Box Results) We show that for weak circuit classes ℭ against which there are natural proofs [Alexander A. Razborov and Steven Rudich, 1997], pseudorandom functions secure against poly-size circuits in ℭ imply superpolynomial lower bounds in P against poly-size circuits in ℭ. We also show that for a certain natural variant of MCSP, there is a polynomial-time reduction from approximating the problem well in the worst case to solving it on average. These results are shown using non-black-box techniques, and in the first case we show that there is no black-box proof of the result under standard crypto assumptions.

Cite as

Rahul Santhanam. Pseudorandomness and the Minimum Circuit Size Problem. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 68:1-68:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{santhanam:LIPIcs.ITCS.2020.68,
  author =	{Santhanam, Rahul},
  title =	{{Pseudorandomness and the Minimum Circuit Size Problem}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{68:1--68:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.68},
  URN =		{urn:nbn:de:0030-drops-117532},
  doi =		{10.4230/LIPIcs.ITCS.2020.68},
  annote =	{Keywords: Minimum Circuit Size Problem, Pseudorandomness, Average-case Complexity, Natural Proofs, Universality Conjecture}
}
Document
Fine-Grained Derandomization: From Problem-Centric to Resource-Centric Complexity

Authors: Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We show that popular hardness conjectures about problems from the field of fine-grained complexity theory imply structural results for resource-based complexity classes. Namely, we show that if either k-Orthogonal Vectors or k-CLIQUE requires n^{epsilon k} time, for some constant epsilon>1/2, to count (note that these conjectures are significantly weaker than the usual ones made on these problems) on randomized machines for all but finitely many input lengths, then we have the following derandomizations: - BPP can be decided in polynomial time using only n^alpha random bits on average over any efficient input distribution, for any constant alpha>0 - BPP can be decided in polynomial time with no randomness on average over the uniform distribution This answers an open question of Ball et al. (STOC '17) in the positive of whether derandomization can be achieved from conjectures from fine-grained complexity theory. More strongly, these derandomizations improve over all previous ones achieved from worst-case uniform assumptions by succeeding on all but finitely many input lengths. Previously, derandomizations from worst-case uniform assumptions were only know to succeed on infinitely many input lengths. It is specifically the structure and moderate hardness of the k-Orthogonal Vectors and k-CLIQUE problems that makes removing this restriction possible. Via this uniform derandomization, we connect the problem-centric and resource-centric views of complexity theory by showing that exact hardness assumptions about specific problems like k-CLIQUE imply quantitative and qualitative relationships between randomized and deterministic time. This can be either viewed as a barrier to proving some of the main conjectures of fine-grained complexity theory lest we achieve a major breakthrough in unconditional derandomization or, optimistically, as route to attain such derandomizations by working on very concrete and weak conjectures about specific problems.

Cite as

Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. Fine-Grained Derandomization: From Problem-Centric to Resource-Centric Complexity. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 27:1-27:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{carmosino_et_al:LIPIcs.ICALP.2018.27,
  author =	{Carmosino, Marco L. and Impagliazzo, Russell and Sabin, Manuel},
  title =	{{Fine-Grained Derandomization: From Problem-Centric to Resource-Centric Complexity}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.27},
  URN =		{urn:nbn:de:0030-drops-90316},
  doi =		{10.4230/LIPIcs.ICALP.2018.27},
  annote =	{Keywords: Derandomization, Hardness vs Randomness, Fine-Grained Complexity, Average-Case Complexity, k-Orthogonal Vectors, k-CLIQUE}
}
  • Refine by Author
  • 1 Carmosino, Marco L.
  • 1 Impagliazzo, Russell
  • 1 Sabin, Manuel
  • 1 Santhanam, Rahul

  • Refine by Classification
  • 1 Theory of computation → Complexity classes
  • 1 Theory of computation → Computational complexity and cryptography

  • Refine by Keyword
  • 1 Average-Case Complexity
  • 1 Average-case Complexity
  • 1 Derandomization
  • 1 Fine-Grained Complexity
  • 1 Hardness vs Randomness
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail