7 Search Results for "Schr�der, Marc"


Document
Chasing Puppies: Mobile Beacon Routing on Closed Curves

Authors: Mikkel Abrahamsen, Jeff Erickson, Irina Kostitsyna, Maarten Löffler, Tillmann Miltzow, Jérôme Urhausen, Jordi Vermeulen, and Giovanni Viglietta

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We solve an open problem posed by Michael Biro at CCCG 2013 that was inspired by his and others’ work on beacon-based routing. Consider a human and a puppy on a simple closed curve in the plane. The human can walk along the curve at bounded speed and change direction as desired. The puppy runs with unbounded speed along the curve as long as the Euclidean straight-line distance to the human is decreasing, so that it is always at a point on the curve where the distance is locally minimal. Assuming that the curve is smooth (with some mild genericity constraints) or a simple polygon, we prove that the human can always catch the puppy in finite time.

Cite as

Mikkel Abrahamsen, Jeff Erickson, Irina Kostitsyna, Maarten Löffler, Tillmann Miltzow, Jérôme Urhausen, Jordi Vermeulen, and Giovanni Viglietta. Chasing Puppies: Mobile Beacon Routing on Closed Curves. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.SoCG.2021.5,
  author =	{Abrahamsen, Mikkel and Erickson, Jeff and Kostitsyna, Irina and L\"{o}ffler, Maarten and Miltzow, Tillmann and Urhausen, J\'{e}r\^{o}me and Vermeulen, Jordi and Viglietta, Giovanni},
  title =	{{Chasing Puppies: Mobile Beacon Routing on Closed Curves}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.5},
  URN =		{urn:nbn:de:0030-drops-138046},
  doi =		{10.4230/LIPIcs.SoCG.2021.5},
  annote =	{Keywords: Beacon routing, navigation, generic smooth curves, puppies}
}
Document
Gourds: A Sliding-Block Puzzle with Turning

Authors: Joep Hamersma, Marc van Kreveld, Yushi Uno, and Tom C. van der Zanden

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
We propose a new kind of sliding-block puzzle, called Gourds, where the objective is to rearrange 1×2 pieces on a hexagonal grid board of 2n+1 cells with n pieces, using sliding, turning and pivoting moves. This puzzle has a single empty cell on a board and forms a natural extension of the 15-puzzle to include rotational moves. We analyze the puzzle and completely characterize the cases when the puzzle can always be solved. We also study the complexity of determining whether a given set of colored pieces can be placed on a colored hexagonal grid board with matching colors. We show this problem is NP-complete for arbitrarily many colors, but solvable in randomized polynomial time if the number of colors is a fixed constant.

Cite as

Joep Hamersma, Marc van Kreveld, Yushi Uno, and Tom C. van der Zanden. Gourds: A Sliding-Block Puzzle with Turning. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{hamersma_et_al:LIPIcs.ISAAC.2020.33,
  author =	{Hamersma, Joep and van Kreveld, Marc and Uno, Yushi and van der Zanden, Tom C.},
  title =	{{Gourds: A Sliding-Block Puzzle with Turning}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.33},
  URN =		{urn:nbn:de:0030-drops-133773},
  doi =		{10.4230/LIPIcs.ISAAC.2020.33},
  annote =	{Keywords: computational complexity, divide-and-conquer, Hamiltonian cycle, puzzle game, (combinatorial) reconfiguration, sliding-block puzzle}
}
Document
Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and Information Management
Network Investment Games with Wardrop Followers

Authors: Daniel Schmand, Marc Schröder, and Alexander Skopalik

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study a two-sided network investment game consisting of two sets of players, called providers and users. The game is set in two stages. In the first stage, providers aim to maximize their profit by investing in bandwidth of cloud computing services. The investments of the providers yield a set of usable services for the users. In the second stage, each user wants to process a task and therefore selects a bundle of services so as to minimize the total processing time. We assume the total processing time to be separable over the chosen services and the processing time of each service to depend on the utilization of the service and the installed bandwidth. We provide insights on how competition between providers affects the total costs of the users and show that every game on a series-parallel graph can be reduced to an equivalent single edge game when analyzing the set of subgame perfect Nash equilibria.

Cite as

Daniel Schmand, Marc Schröder, and Alexander Skopalik. Network Investment Games with Wardrop Followers. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 151:1-151:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{schmand_et_al:LIPIcs.ICALP.2019.151,
  author =	{Schmand, Daniel and Schr\"{o}der, Marc and Skopalik, Alexander},
  title =	{{Network Investment Games with Wardrop Followers}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{151:1--151:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.151},
  URN =		{urn:nbn:de:0030-drops-107272},
  doi =		{10.4230/LIPIcs.ICALP.2019.151},
  annote =	{Keywords: Network Investment Game, Wardrop Equilibrium, Subgame Perfect Nash Equilibrium}
}
Document
Competitive Searching for a Line on a Line Arrangement

Authors: Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, and Wouter Meulemans

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We discuss the problem of searching for an unknown line on a known or unknown line arrangement by a searcher S, and show that a search strategy exists that finds the line competitively, that is, with detour factor at most a constant when compared to the situation where S has all knowledge. In the case where S knows all lines but not which one is sought, the strategy is 79-competitive. We also show that it may be necessary to travel on Omega(n) lines to realize a constant competitive ratio. In the case where initially, S does not know any line, but learns about the ones it encounters during the search, we give a 414.2-competitive search strategy.

Cite as

Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, and Wouter Meulemans. Competitive Searching for a Line on a Line Arrangement. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 49:1-49:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bouts_et_al:LIPIcs.ISAAC.2018.49,
  author =	{Bouts, Quirijn and Castermans, Thom and van Goethem, Arthur and van Kreveld, Marc and Meulemans, Wouter},
  title =	{{Competitive Searching for a Line on a Line Arrangement}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{49:1--49:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.49},
  URN =		{urn:nbn:de:0030-drops-99970},
  doi =		{10.4230/LIPIcs.ISAAC.2018.49},
  annote =	{Keywords: Competitive searching, line arrangement, detour factor, search strategy}
}
Document
Convex Partial Transversals of Planar Regions

Authors: Vahideh Keikha, Mees van de Kerkhof, Marc van Kreveld, Irina Kostitsyna, Maarten Löffler, Frank Staals, Jérôme Urhausen, Jordi L. Vermeulen, and Lionov Wiratma

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We consider the problem of testing, for a given set of planar regions R and an integer k, whether there exists a convex shape whose boundary intersects at least k regions of R. We provide polynomial-time algorithms for the case where the regions are disjoint axis-aligned rectangles or disjoint line segments with a constant number of orientations. On the other hand, we show that the problem is NP-hard when the regions are intersecting axis-aligned rectangles or 3-oriented line segments. For several natural intermediate classes of shapes (arbitrary disjoint segments, intersecting 2-oriented segments) the problem remains open.

Cite as

Vahideh Keikha, Mees van de Kerkhof, Marc van Kreveld, Irina Kostitsyna, Maarten Löffler, Frank Staals, Jérôme Urhausen, Jordi L. Vermeulen, and Lionov Wiratma. Convex Partial Transversals of Planar Regions. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 52:1-52:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{keikha_et_al:LIPIcs.ISAAC.2018.52,
  author =	{Keikha, Vahideh and van de Kerkhof, Mees and van Kreveld, Marc and Kostitsyna, Irina and L\"{o}ffler, Maarten and Staals, Frank and Urhausen, J\'{e}r\^{o}me and Vermeulen, Jordi L. and Wiratma, Lionov},
  title =	{{Convex Partial Transversals of Planar Regions}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{52:1--52:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.52},
  URN =		{urn:nbn:de:0030-drops-100003},
  doi =		{10.4230/LIPIcs.ISAAC.2018.52},
  annote =	{Keywords: computational geometry, algorithms, NP-hardness, convex transversals}
}
Document
A Compositional Typed Higher-Order Logic with Definitions

Authors: Ingmar Dasseville, Matthias van der Hallen, Bart Bogaerts, Gerda Janssens, and Marc Denecker

Published in: OASIcs, Volume 52, Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016)


Abstract
Expressive KR languages are built by integrating different language constructs, or extending a language with new language constructs. This process is difficult if non-truth-functional or non-monotonic constructs are involved. What is needed is a compositional principle. This paper presents a compositional principle for defining logics by modular composition of logical constructs, and applies it to build a higher order logic integrating typed lambda calculus and rule sets under a well-founded or stable semantics. Logical constructs are formalized as triples of a syntactical rule, a semantical rule, and a typing rule. The paper describes how syntax, typing and semantics of the logic are composed from the set of its language constructs. The base semantical concept is the infon: mappings from structures to values in these structures. Semantical operators of language constructs operate on infons and allow to construct the infons of compound expressions from the infons of its subexpressions. This conforms to Frege's principle of compositionality.

Cite as

Ingmar Dasseville, Matthias van der Hallen, Bart Bogaerts, Gerda Janssens, and Marc Denecker. A Compositional Typed Higher-Order Logic with Definitions. In Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016). Open Access Series in Informatics (OASIcs), Volume 52, pp. 14:1-14:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dasseville_et_al:OASIcs.ICLP.2016.14,
  author =	{Dasseville, Ingmar and van der Hallen, Matthias and Bogaerts, Bart and Janssens, Gerda and Denecker, Marc},
  title =	{{A Compositional Typed Higher-Order Logic with Definitions}},
  booktitle =	{Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016)},
  pages =	{14:1--14:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-007-1},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{52},
  editor =	{Carro, Manuel and King, Andy and Saeedloei, Neda and De Vos, Marina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ICLP.2016.14},
  URN =		{urn:nbn:de:0030-drops-67447},
  doi =		{10.4230/OASIcs.ICLP.2016.14},
  annote =	{Keywords: Logic, Semantics, Compositionality}
}
Document
The role of recurrent networks in neural architectures of grounded cognition: learning of control

Authors: Frank Van der Velde and Marc de Kamps

Published in: Dagstuhl Seminar Proceedings, Volume 8041, Recurrent Neural Networks- Models, Capacities, and Applications (2008)


Abstract
Recurrent networks have been used as neural models of language processing, with mixed results. Here, we discuss the role of recurrent networks in a neural architecture of grounded cognition. In particular, we discuss how the control of binding in this architecture can be learned. We trained a simple recurrent network (SRN) and a feedforward network (FFN) for this task. The results show that information from the architecture is needed as input for these networks to learn control of binding. Thus, both control systems are recurrent. We found that the recurrent system consisting of the architecture and an SRN or an FFN as a "core" can learn basic (but recursive) sentence structures. Problems with control of binding arise when the system with the SRN is tested on number of new sentence structures. In contrast, control of binding for these structures succeeds with the FFN. Yet, for some structures with (unlimited) embeddings, difficulties arise due to dynamical binding conflicts in the architecture itself. In closing, we discuss potential future developments of the architecture presented here.

Cite as

Frank Van der Velde and Marc de Kamps. The role of recurrent networks in neural architectures of grounded cognition: learning of control. In Recurrent Neural Networks- Models, Capacities, and Applications. Dagstuhl Seminar Proceedings, Volume 8041, pp. 1-18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{vandervelde_et_al:DagSemProc.08041.6,
  author =	{Van der Velde, Frank and de Kamps, Marc},
  title =	{{The role of recurrent networks in neural architectures of grounded cognition: learning of control}},
  booktitle =	{Recurrent Neural Networks- Models, Capacities, and Applications},
  pages =	{1--18},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8041},
  editor =	{Luc De Raedt and Barbara Hammer and Pascal Hitzler and Wolfgang Maass},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08041.6},
  URN =		{urn:nbn:de:0030-drops-14213},
  doi =		{10.4230/DagSemProc.08041.6},
  annote =	{Keywords: Grounded representations, binding control, combinatorial structures, neural architecture, recurrent network, learning}
}
  • Refine by Author
  • 3 van Kreveld, Marc
  • 2 Kostitsyna, Irina
  • 2 Löffler, Maarten
  • 2 Urhausen, Jérôme
  • 1 Abrahamsen, Mikkel
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Computational geometry
  • 1 Theory of computation → Algorithmic game theory and mechanism design
  • 1 Theory of computation → Data structures design and analysis
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Network games

  • Refine by Keyword
  • 1 (combinatorial) reconfiguration
  • 1 Beacon routing
  • 1 Competitive searching
  • 1 Compositionality
  • 1 Grounded representations
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2018
  • 1 2008
  • 1 2016
  • 1 2019
  • 1 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail