9 Search Results for "Smith, Michael A."


Document
Short Paper
From Change Detection to Change Analytics: Decomposing Multi-Temporal Pixel Evolution Vectors (Short Paper)

Authors: Victoria Scherelis, Patrick Laube, and Michael Doering

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Change detection is a well-established process of detaining spatial and temporal changes of entities between two or more timesteps. Current advancements in digital map processing offer vast new sources of multitemporal geodata. As the temporal aspect gains complexity, the dismantling of detected changes on a pixel-based scale becomes a costly undertaking. In efforts to establish and preserve the evolution of detected changes in long time series, this paper presents a method that allows the decomposition of pixel evolution vectors into three dimensions of change, described as directed change, change variability, and change magnitude. The three dimensions of change compile to complex change analytics per individual pixels and offer a multi-faceted analysis of landscape changes on an ordinal scale. Finally, the integration of class confidence from learned uncertainty estimates illustrates the avenue to include uncertainty into the here presented change analytics, and the three dimensions of change are visualized in complex change maps.

Cite as

Victoria Scherelis, Patrick Laube, and Michael Doering. From Change Detection to Change Analytics: Decomposing Multi-Temporal Pixel Evolution Vectors (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 65:1-65:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{scherelis_et_al:LIPIcs.GIScience.2023.65,
  author =	{Scherelis, Victoria and Laube, Patrick and Doering, Michael},
  title =	{{From Change Detection to Change Analytics: Decomposing Multi-Temporal Pixel Evolution Vectors}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{65:1--65:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.65},
  URN =		{urn:nbn:de:0030-drops-189604},
  doi =		{10.4230/LIPIcs.GIScience.2023.65},
  annote =	{Keywords: Digital map processing, spatio-temporal modelling, land-use change}
}
Document
APPROX
Facility Location in the Sublinear Geometric Model

Authors: Morteza Monemizadeh

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
In the sublinear geometric model, we are provided with an oracle access to a point set P of n points in a bounded discrete space [Δ]², where Δ = n^O(1) is a polynomially bounded number in n. That is, we do not have direct access to the points, but we can make certain types of queries and there is an oracle that responds to our queries. The type of queries that we assume we can make in this paper, are range counting queries where ranges are axis-aligned rectangles (that are basic primitives in database [Srikanta Tirthapura and David P. Woodruff, 2012; Bentley, 1975; Mark de Berg et al., 2008], computational geometry [Pankaj K. Agarwal, 2004; Pankaj K. Agarwal et al., 1996; Boris Aronov et al., 2010; Boris Aronov et al., 2009], and machine learning [Menachem Sadigurschi and Uri Stemmer, 2021; Long and Tan, 1998; Michael J. Kearns and Umesh V. Vazirani, 1995; Michael J. Kearns and Umesh V. Vazirani, 1994]). The oracle then answers these queries by returning the number of points that are in queried ranges. Let {Alg} be an algorithm that (exactly or approximately) solves a problem 𝒫 in the sublinear geometric model. The query complexity of Alg is measured in terms of the number of queries that Alg makes to solve 𝒫. In this paper, we study the complexity of the (uniform) Euclidean facility location problem in the sublinear geometric model. We develop a randomized sublinear algorithm that with high probability, (1+ε)-approximates the cost of the Euclidean facility location problem of the point set P in the sublinear geometric model using Õ(√n) range counting queries. We complement this result by showing that approximating the cost of the Euclidean facility location problem within o(log(n))-factor in the sublinear geometric model using the sampling strategy that we propose for our sublinear algorithm needs Ω̃(n^{1/4}) RangeCount queries. We leave it as an open problem whether such a polynomial lower bound on the number of RangeCount queries exists for any randomized sublinear algorithm that approximates the cost of the facility location problem within a constant factor.

Cite as

Morteza Monemizadeh. Facility Location in the Sublinear Geometric Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 6:1-6:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{monemizadeh:LIPIcs.APPROX/RANDOM.2023.6,
  author =	{Monemizadeh, Morteza},
  title =	{{Facility Location in the Sublinear Geometric Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{6:1--6:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.6},
  URN =		{urn:nbn:de:0030-drops-188315},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.6},
  annote =	{Keywords: Facility Location, Sublinear Geometric Model, Range Counting Queries}
}
Document
RANDOM
Giant Components in Random Temporal Graphs

Authors: Ruben Becker, Arnaud Casteigts, Pierluigi Crescenzi, Bojana Kodric, Malte Renken, Michael Raskin, and Viktor Zamaraev

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
A temporal graph is a graph whose edges appear only at certain points in time. In these graphs, reachability among nodes relies on paths that traverse edges in chronological order (temporal paths). Unlike standard paths, temporal paths may not be composable, thus the reachability relation is not transitive and connected components (i.e., sets of pairwise temporally connected nodes) do not form equivalence classes, a fact with far-reaching consequences. Recently, Casteigts et al. [FOCS 2021] proposed a natural temporal analog of the seminal Erdős-Rényi random graph model, based on the same parameters n and p. The proposed model is obtained by randomly permuting the edges of an Erdős-Rényi random graph and interpreting this permutation as an ordering of presence times. Casteigts et al. showed that the well-known single threshold for connectivity in the Erdős-Rényi model fans out into multiple phase transitions for several distinct notions of reachability in the temporal setting. The second most basic phenomenon studied by Erdős and Rényi in static (i.e., non-temporal) random graphs is the emergence of a giant connected component. However, the existence of a similar phase transition in the temporal model was left open until now. In this paper, we settle this question. We identify a sharp threshold at p = log n/n, where the size of the largest temporally connected component increases from o(n) to n-o(n) nodes. This transition occurs significantly later than in the static setting, where a giant component of size n-o(n) already exists for any p ∈ ω(1/n) (i.e., as soon as p is larger than a constant fraction of n). Interestingly, the threshold that we obtain holds for both open and closed connected components, i.e., components that allow, respectively forbid, their connecting paths to use external nodes - a distinction arising from the absence of transitivity. We achieve these results by strengthening the tools from Casteigts et al. and developing new techniques that provide means to decouple dependencies between past and future events in temporal Erdős-Rényi graphs, which could be of general interest in future investigations of these objects.

Cite as

Ruben Becker, Arnaud Casteigts, Pierluigi Crescenzi, Bojana Kodric, Malte Renken, Michael Raskin, and Viktor Zamaraev. Giant Components in Random Temporal Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.APPROX/RANDOM.2023.29,
  author =	{Becker, Ruben and Casteigts, Arnaud and Crescenzi, Pierluigi and Kodric, Bojana and Renken, Malte and Raskin, Michael and Zamaraev, Viktor},
  title =	{{Giant Components in Random Temporal Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.29},
  URN =		{urn:nbn:de:0030-drops-188542},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.29},
  annote =	{Keywords: random temporal graph, Erd\H{o}s–R\'{e}nyi random graph, sharp threshold, temporal connectivity, temporal connected component, edge-ordered graph}
}
Document
RANDOM
On Constructing Spanners from Random Gaussian Projections

Authors: Sepehr Assadi, Michael Kapralov, and Huacheng Yu

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Graph sketching is a powerful paradigm for analyzing graph structure via linear measurements introduced by Ahn, Guha, and McGregor (SODA'12) that has since found numerous applications in streaming, distributed computing, and massively parallel algorithms, among others. Graph sketching has proven to be quite successful for various problems such as connectivity, minimum spanning trees, edge or vertex connectivity, and cut or spectral sparsifiers. Yet, the problem of approximating shortest path metric of a graph, and specifically computing a spanner, is notably missing from the list of successes. This has turned the status of this fundamental problem into one of the most longstanding open questions in this area. We present a partial explanation of this lack of success by proving a strong lower bound for a large family of graph sketching algorithms that encompasses prior work on spanners and many (but importantly not also all) related cut-based problems mentioned above. Our lower bound matches the algorithmic bounds of the recent result of Filtser, Kapralov, and Nouri (SODA'21), up to lower order terms, for constructing spanners via the same graph sketching family. This establishes near-optimality of these bounds, at least restricted to this family of graph sketching techniques, and makes progress on a conjecture posed in this latter work.

Cite as

Sepehr Assadi, Michael Kapralov, and Huacheng Yu. On Constructing Spanners from Random Gaussian Projections. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 57:1-57:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.APPROX/RANDOM.2023.57,
  author =	{Assadi, Sepehr and Kapralov, Michael and Yu, Huacheng},
  title =	{{On Constructing Spanners from Random Gaussian Projections}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{57:1--57:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.57},
  URN =		{urn:nbn:de:0030-drops-188821},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.57},
  annote =	{Keywords: sketching algorithm, lower bound, graph spanner}
}
Document
Accumulation Analysis

Authors: Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

Published in: LIPIcs, Volume 222, 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
A typestate specification indicates which behaviors of an object are permitted in each of the object’s states. In the general case, soundly checking a typestate specification requires precise information about aliasing (i.e., an alias or pointer analysis), which is computationally expensive. This requirement has hindered the adoption of sound typestate analyses in practice. This paper identifies accumulation typestate specifications, which are the subset of typestate specifications that can be soundly checked without any information about aliasing. An accumulation typestate specification can be checked instead by an accumulation analysis: a simple, fast dataflow analysis that conservatively approximates the operations that have been performed on an object. This paper formalizes the notions of accumulation analysis and accumulation typestate specification. It proves that accumulation typestate specifications are exactly those typestate specifications that can be checked soundly without aliasing information. Further, 41% of the typestate specifications that appear in the research literature are accumulation typestate specifications.

Cite as

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. Accumulation Analysis. In 36th European Conference on Object-Oriented Programming (ECOOP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 222, pp. 10:1-10:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kellogg_et_al:LIPIcs.ECOOP.2022.10,
  author =	{Kellogg, Martin and Shadab, Narges and Sridharan, Manu and Ernst, Michael D.},
  title =	{{Accumulation Analysis}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{10:1--10:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2022.10},
  URN =		{urn:nbn:de:0030-drops-162381},
  doi =		{10.4230/LIPIcs.ECOOP.2022.10},
  annote =	{Keywords: Typestate, finite-state property}
}
Document
BISER: Fast Characterization of Segmental Duplication Structure in Multiple Genome Assemblies

Authors: Hamza Išerić, Can Alkan, Faraz Hach, and Ibrahim Numanagić

Published in: LIPIcs, Volume 201, 21st International Workshop on Algorithms in Bioinformatics (WABI 2021)


Abstract
The increasing availability of high-quality genome assemblies raised interest in the characterization of genomic architecture. Major architectural parts, such as common repeats and segmental duplications (SDs), increase genome plasticity that stimulates further evolution by changing the genomic structure. However, optimal computation of SDs through standard local alignment algorithms is impractical due to the size of most genomes. A cross-genome evolutionary analysis of SDs is even harder, as one needs to characterize SDs in multiple genomes and find relations between those SDs and unique segments in other genomes. Thus there is a need for fast and accurate algorithms to characterize SD structure in multiple genome assemblies to better understand the evolutionary forces that shaped the genomes of today. Here we introduce a new tool, BISER, to quickly detect SDs in multiple genomes and identify elementary SDs and core duplicons that drive the formation of such SDs. BISER improves earlier tools by (i) scaling the detection of SDs with low homology (75%) to multiple genomes while introducing further 8-24x speed-ups over the existing tools, and by (ii) characterizing elementary SDs and detecting core duplicons to help trace the evolutionary history of duplications to as far as 90 million years.

Cite as

Hamza Išerić, Can Alkan, Faraz Hach, and Ibrahim Numanagić. BISER: Fast Characterization of Segmental Duplication Structure in Multiple Genome Assemblies. In 21st International Workshop on Algorithms in Bioinformatics (WABI 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 201, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{iseric_et_al:LIPIcs.WABI.2021.15,
  author =	{I\v{s}eri\'{c}, Hamza and Alkan, Can and Hach, Faraz and Numanagi\'{c}, Ibrahim},
  title =	{{BISER: Fast Characterization of Segmental Duplication Structure in Multiple Genome Assemblies}},
  booktitle =	{21st International Workshop on Algorithms in Bioinformatics (WABI 2021)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-200-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{201},
  editor =	{Carbone, Alessandra and El-Kebir, Mohammed},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2021.15},
  URN =		{urn:nbn:de:0030-drops-143681},
  doi =		{10.4230/LIPIcs.WABI.2021.15},
  annote =	{Keywords: genome analysis, fast alignment, segmental duplications, core duplicons, sequence decomposition}
}
Document
Expander Graphs Are Non-Malleable Codes

Authors: Peter Michael Reichstein Rasmussen and Amit Sahai

Published in: LIPIcs, Volume 163, 1st Conference on Information-Theoretic Cryptography (ITC 2020)


Abstract
Any d-regular graph on n vertices with spectral expansion λ satisfying n = Ω(d³log(d)/λ) yields a O((λ^{3/2})/d)-non-malleable code for single-bit messages in the split-state model.

Cite as

Peter Michael Reichstein Rasmussen and Amit Sahai. Expander Graphs Are Non-Malleable Codes. In 1st Conference on Information-Theoretic Cryptography (ITC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 163, pp. 6:1-6:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{rasmussen_et_al:LIPIcs.ITC.2020.6,
  author =	{Rasmussen, Peter Michael Reichstein and Sahai, Amit},
  title =	{{Expander Graphs Are Non-Malleable Codes}},
  booktitle =	{1st Conference on Information-Theoretic Cryptography (ITC 2020)},
  pages =	{6:1--6:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-151-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{163},
  editor =	{Tauman Kalai, Yael and Smith, Adam D. and Wichs, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2020.6},
  URN =		{urn:nbn:de:0030-drops-121114},
  doi =		{10.4230/LIPIcs.ITC.2020.6},
  annote =	{Keywords: Non-Malleable Code, Expander Graph, Mixing Lemma}
}
Document
Keynote Speakers
Periods in Subtraction Games (Keynote Speakers)

Authors: Bret Benesh, Jamylle Carter, Deidra A. Coleman, Douglas G. Crabill, Jack H. Good, Michael A. Smith, Jennifer Travis, and Mark Daniel Ward

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
We discuss the structure of periods in subtraction games. In particular, we discuss ways that a computational approach yields insights to the periods that emerge in the asymptotic structure of these combinatorial games.

Cite as

Bret Benesh, Jamylle Carter, Deidra A. Coleman, Douglas G. Crabill, Jack H. Good, Michael A. Smith, Jennifer Travis, and Mark Daniel Ward. Periods in Subtraction Games (Keynote Speakers). In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 8:1-8:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{benesh_et_al:LIPIcs.AofA.2018.8,
  author =	{Benesh, Bret and Carter, Jamylle and Coleman, Deidra A. and Crabill, Douglas G. and Good, Jack H. and Smith, Michael A. and Travis, Jennifer and Ward, Mark Daniel},
  title =	{{Periods in Subtraction Games}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{8:1--8:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.8},
  URN =		{urn:nbn:de:0030-drops-89015},
  doi =		{10.4230/LIPIcs.AofA.2018.8},
  annote =	{Keywords: combinatorial games, subtraction games, periods, asymptotic structure}
}
Document
07132 Report – Towards Interoperability of Biomedical Ontologies

Authors: Mark A. Musen, Michael Schroeder, and Barry Smith

Published in: Dagstuhl Seminar Proceedings, Volume 7132, Towards Interoperability of Biomedical Ontologies (2008)


Abstract
The meeting focused on uses of ontologies, with a special focus on spatial ontologies, in addressing the ever increasing needs faced by biology and medicine to cope with ever expanding quantities of data. To provide effective solutions computers need to integrate data deriving from myriad heterogeneous sources by bringing the data together within a single framework. The meeting brought together leaders in the field of what are called "top-level ontologies" to address this issue, and to establish strategies among leaders in the field of biomedical ontology for the creation of interoperable biomedical ontologies which will serve the goal of useful data integration.

Cite as

Mark A. Musen, Michael Schroeder, and Barry Smith. 07132 Report – Towards Interoperability of Biomedical Ontologies. In Towards Interoperability of Biomedical Ontologies. Dagstuhl Seminar Proceedings, Volume 7132, pp. 1-7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{musen_et_al:DagSemProc.07132.1,
  author =	{Musen, Mark A. and Schroeder, Michael and Smith, Barry},
  title =	{{07132 Report – Towards Interoperability of Biomedical Ontologies}},
  booktitle =	{Towards Interoperability of Biomedical Ontologies},
  pages =	{1--7},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{7132},
  editor =	{Mark A. Musen and Michael Schroeder and Barry Smith},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.07132.1},
  URN =		{urn:nbn:de:0030-drops-16280},
  doi =		{10.4230/DagSemProc.07132.1},
  annote =	{Keywords: Formal ontology, biomedical ontology, standardization, data integration, information retrieval, reasoning with information at different levels of granularity}
}
  • Refine by Author
  • 1 Alkan, Can
  • 1 Assadi, Sepehr
  • 1 Becker, Ruben
  • 1 Benesh, Bret
  • 1 Carter, Jamylle
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Applied computing → Bioinformatics
  • 1 Information systems → Spatial-temporal systems
  • 1 Mathematics of computing → Combinatorial algorithms
  • 1 Mathematics of computing → Random graphs
  • Show More...

  • Refine by Keyword
  • 1 Digital map processing
  • 1 Erdős–Rényi random graph
  • 1 Expander Graph
  • 1 Facility Location
  • 1 Formal ontology
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 4 2023
  • 1 2008
  • 1 2018
  • 1 2020
  • 1 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail