1 Search Results for "Subrahmanyam, K Venkata"


Document
Constructive Non-Commutative Rank Computation Is in Deterministic Polynomial Time

Authors: Gábor Ivanyos, Youming Qiao, and K Venkata Subrahmanyam

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
Let {\mathcal B} be a linear space of matrices over a field {\mathbb spanned by n\times n matrices B_1, \dots, B_m. The non-commutative rank of {\mathcal B}$ is the minimum r\in {\mathbb N} such that there exists U\leq {\mathbb F}^n satisfying \dim(U)-\dim( {\mathcal B} (U))\geq n-r, where {\mathcal B}(U):={\mathrm span}(\cup_{i\in[m]} B_i(U)). Computing the non-commutative rank generalizes some well-known problems including the bipartite graph maximum matching problem and the linear matroid intersection problem. In this paper we give a deterministic polynomial-time algorithm to compute the non-commutative rank over any field {\mathbb F}. Prior to our work, such an algorithm was only known over the rational number field {\mathbb Q}, a result due to Garg et al, [GGOW]. Our algorithm is constructive and produces a witness certifying the non-commutative rank, a feature that is missing in the algorithm from [GGOW]. Our result is built on techniques which we developed in a previous paper [IQS1], with a new reduction procedure that helps to keep the blow-up parameter small. There are two ways to realize this reduction. The first involves constructivizing a key result of Derksen and Makam [DM2] which they developed in order to prove that the null cone of matrix semi-invariants is cut out by generators whose degree is polynomial in the size of the matrices involved. We also give a second, simpler method to achieve this. This gives another proof of the polynomial upper bound on the degree of the generators cutting out the null cone of matrix semi-invariants. Both the invariant-theoretic result and the algorithmic result rely crucially on the regularity lemma proved in [IQS1]. In this paper we improve on the constructive version of the regularity lemma from [IQS1] by removing a technical coprime condition that was assumed there.

Cite as

Gábor Ivanyos, Youming Qiao, and K Venkata Subrahmanyam. Constructive Non-Commutative Rank Computation Is in Deterministic Polynomial Time. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 55:1-55:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{ivanyos_et_al:LIPIcs.ITCS.2017.55,
  author =	{Ivanyos, G\'{a}bor and Qiao, Youming and Subrahmanyam, K Venkata},
  title =	{{Constructive Non-Commutative Rank Computation Is in Deterministic Polynomial Time}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{55:1--55:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.55},
  URN =		{urn:nbn:de:0030-drops-81667},
  doi =		{10.4230/LIPIcs.ITCS.2017.55},
  annote =	{Keywords: invariant theory, non-commutative rank, null cone, symbolic determinant identity testing, semi-invariants of quivers}
}
  • Refine by Author
  • 1 Ivanyos, Gábor
  • 1 Qiao, Youming
  • 1 Subrahmanyam, K Venkata

  • Refine by Classification

  • Refine by Keyword
  • 1 invariant theory
  • 1 non-commutative rank
  • 1 null cone
  • 1 semi-invariants of quivers
  • 1 symbolic determinant identity testing

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2017

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail