35 Search Results for "Sul�r, Mat��"


Document
Symmetries for Cube-And-Conquer in Finite Model Finding

Authors: João Araújo, Choiwah Chow, and Mikoláš Janota

Published in: LIPIcs, Volume 280, 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)


Abstract
The cube-and-conquer paradigm enables massive parallelization of SAT solvers, which has proven to be crucial in solving highly combinatorial problems. In this paper, we apply the paradigm in the context of finite model finding, where we show that isomorphic cubes can be discarded since they lead to isomorphic models. However, we are faced with the complication that a well-known technique, the Least Number Heuristic (LNH), already exists in finite model finders to effectively prune (some) isomorphic models from the search. Therefore, it needs to be shown that isomorphic cubes still can be discarded when the LNH is used. The presented ideas are incorporated into the finite model finder Mace4, where we demonstrate significant improvements in model enumeration.

Cite as

João Araújo, Choiwah Chow, and Mikoláš Janota. Symmetries for Cube-And-Conquer in Finite Model Finding. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{araujo_et_al:LIPIcs.CP.2023.8,
  author =	{Ara\'{u}jo, Jo\~{a}o and Chow, Choiwah and Janota, Mikol\'{a}\v{s}},
  title =	{{Symmetries for Cube-And-Conquer in Finite Model Finding}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.8},
  URN =		{urn:nbn:de:0030-drops-190455},
  doi =		{10.4230/LIPIcs.CP.2023.8},
  annote =	{Keywords: finite model enumeration, cube-and-conquer, symmetry-breaking, parallel algorithm, least number heuristic}
}
Document
Strongly Finitary Monads for Varieties of Quantitative Algebras

Authors: Jiří Adámek, Matěj Dostál, and Jiří Velebil

Published in: LIPIcs, Volume 270, 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)


Abstract
Quantitative algebras are algebras enriched in the category Met of metric spaces or UMet of ultrametric spaces so that all operations are nonexpanding. Mardare, Plotkin and Panangaden introduced varieties (aka 1-basic varieties) as classes of quantitative algebras presented by quantitative equations. We prove that, when restricted to ultrametrics, varieties bijectively correspond to strongly finitary monads T on UMet. This means that T is the left Kan extension of its restriction to finite discrete spaces. An analogous result holds in the category CUMet of complete ultrametric spaces.

Cite as

Jiří Adámek, Matěj Dostál, and Jiří Velebil. Strongly Finitary Monads for Varieties of Quantitative Algebras. In 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 270, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{adamek_et_al:LIPIcs.CALCO.2023.10,
  author =	{Ad\'{a}mek, Ji\v{r}{\'\i} and Dost\'{a}l, Mat\v{e}j and Velebil, Ji\v{r}{\'\i}},
  title =	{{Strongly Finitary Monads for Varieties of Quantitative Algebras}},
  booktitle =	{10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-287-7},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{270},
  editor =	{Baldan, Paolo and de Paiva, Valeria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2023.10},
  URN =		{urn:nbn:de:0030-drops-188078},
  doi =		{10.4230/LIPIcs.CALCO.2023.10},
  annote =	{Keywords: quantitative algebras, ultra-quantitative algebras, strongly finitary monads, varieties}
}
Document
Automata Learning with an Incomplete Teacher

Authors: Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb Koch, Nate Foster, and Alexandra Silva

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
The preceding decade has seen significant interest in use of active learning to build models of programs and protocols. But existing algorithms assume the existence of an idealized oracle - a so-called Minimally Adequate Teacher (MAT) - that cannot be fully realized in practice and so is usually approximated with testing. This work proposes a new framework for active learning based on an incomplete teacher. This new formulation, called iMAT, neatly handles scenarios in which the teacher has access to only a finite number of tests or otherwise has gaps in its knowledge. We adapt Angluin’s L^⋆ algorithm for learning finite automata to incomplete teachers and we build a prototype implementation in OCaml that uses an SMT solver to help fill in information not supplied by the teacher. We demonstrate the behavior of our iMAT prototype on a variety of learning problems from a standard benchmark suite.

Cite as

Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb Koch, Nate Foster, and Alexandra Silva. Automata Learning with an Incomplete Teacher. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 21:1-21:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{moeller_et_al:LIPIcs.ECOOP.2023.21,
  author =	{Moeller, Mark and Wiener, Thomas and Solko-Breslin, Alaia and Koch, Caleb and Foster, Nate and Silva, Alexandra},
  title =	{{Automata Learning with an Incomplete Teacher}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{21:1--21:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.21},
  URN =		{urn:nbn:de:0030-drops-182145},
  doi =		{10.4230/LIPIcs.ECOOP.2023.21},
  annote =	{Keywords: Finite Automata, Active Learning, SMT Solvers}
}
Document
Short Paper
Filtering Isomorphic Models by Invariants (Short Paper)

Authors: João Araújo, Choiwah Chow, and Mikoláš Janota

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
The enumeration of finite models of first order logic formulas is an indispensable tool in computational algebra. The task is hindered by the existence of isomorphic models, which are of no use to mathematicians and therefore are typically filtered out a posteriori. This paper proposes a divide-and-conquer approach to speed up and parallelize this process. We design a series of invariant properties that enable us to partition existing models into mutually non-isomorphic blocks, which are then tackled separately. The presented approach is integrated into the popular tool Mace4, where it shows tremendous speed-ups for a variety of algebraic structures.

Cite as

João Araújo, Choiwah Chow, and Mikoláš Janota. Filtering Isomorphic Models by Invariants (Short Paper). In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 4:1-4:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{araujo_et_al:LIPIcs.CP.2021.4,
  author =	{Ara\'{u}jo, Jo\~{a}o and Chow, Choiwah and Janota, Mikol\'{a}\v{s}},
  title =	{{Filtering Isomorphic Models by Invariants}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{4:1--4:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.4},
  URN =		{urn:nbn:de:0030-drops-152956},
  doi =		{10.4230/LIPIcs.CP.2021.4},
  annote =	{Keywords: finite model enumeration, isomorphism, invariants, Mace4}
}
Document
SCICO Journal-first
Abstracting Gradual References (SCICO Journal-first)

Authors: Matías Toro and Éric Tanter

Published in: LIPIcs, Volume 166, 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
Gradual typing is an effective approach to integrate static and dynamic typing, which supports the smooth transition between both extremes via the (programmer-controlled) precision of type annotations [Jeremy Siek and Walid Taha, 2006; Siek et al., 2015]. Imprecision is normally introduced via the unknown type ?, e.g. function type Int → Bool is more precise than ? → ?, and both more precise than ?. Gradual typing relates types of different precision using consistent type relations, such as type consistency (resp. consistent subtyping), the gradual counterpart of type equality (resp. subtyping). For instance, ? → Int is consistent with Bool → ?. This approach has been applied in a number of settings, such as objects [Jeremy Siek and Walid Taha, 2007], subtyping [Jeremy Siek and Walid Taha, 2007; Ronald Garcia et al., 2016], effects [Bañados Schwerter et al., 2014; Bañados Schwerter et al., 2016], ownership [Ilya Sergey and Dave Clarke, 2012], typestates [Roger Wolff et al., 2011; Ronald Garcia et al., 2014], information-flow typing [Tim Disney and Cormac Flanagan, 2011; Luminous Fennell and Peter Thiemann, 2013; Matías Toro et al., 2018], session types [Igarashi et al., 2017], refinements [Nico Lehmann and {É}ric Tanter, 2017], set-theoretic types [Castagna and Lanvin, 2017], Hoare logic [Johannes Bader et al., 2018], parametric polymorphism [Amal Ahmed et al., 2011; Ahmed et al., 2017; Ina and Igarashi, 2011; Igarashi et al., 2017; Ningning Xie et al., 2018; Matías Toro et al., 2019], and references [Jeremy Siek and Walid Taha, 2006; Herman et al., 2010; Siek et al., 2015]. In particular, gradual typing for mutable references has seen the elaboration of various possible semantics: invariant references [Jeremy Siek and Walid Taha, 2006], guarded references [Herman et al., 2010], monotonic references [Siek et al., 2015], and permissive references [Siek et al., 2015]. Invariant references are a form of references where reference types are invariant with respect to type consistency. Guarded references admit variance thanks to systematic runtime checks on reference reads and writes; the runtime type of an allocated cell never changes during execution. Guarded references have been formulated in a space-efficient coercion calculus, which ensures that gradual programs do not accumulate unbounded pending checks during execution. Hereafter, we refer to this language as HCC. Monotonic references favor efficiency over flexibility by only allowing reference cells to vary towards more precise types. This allows reference operations in statically-typed regions to safely proceed without any runtime checks. Permissive references are the most flexible approach, in which reference cells can be initialized and updated to any value of any type at any time. These four developments reflect different design decisions with respect to gradual references: is the reference type constructor variant under consistency? Can the programmer specify a precise bound on the static type of a reference, and hence on the corresponding heap cell type? Can the heap cell type evolve its precision at runtime, and if yes, how? There is obviously no absolute answer to these questions, as they reflect different tradeoffs such as in efficiency and precision. This work explores the semantics that results from the application of a systematic methodology to gradualize static type systems. Currently we can find in the literature two methodologies to gradualize statically-typed languages: Abstracting Gradual Typing (AGT) [Ronald Garcia et al., 2016], and the Gradualizer [Matteo Cimini and Jeremy Siek, 2016]. In this work, we consider the AGT methodology as it naturally scales to auxiliary structures such as a mutable heap. The AGT methodology helps to systematically construct gradually-typed languages by using abstract interpretation [Cousot and Cousot, 1977] at the type level. In brief, AGT interprets gradual types as an abstraction of sets of possible static types, formally captured through a Galois connection. The static semantics of a gradual language are then derived by lifting the semantics of a statically-typed language through this connection, and the dynamic semantics follow by Curry-Howard from proof normalization of the type safety argument. The AGT methodology has been shown to be effective in many contexts: records and subtyping [Ronald Garcia et al., 2016], type-and-effects [Bañados Schwerter et al., 2014; Bañados Schwerter et al., 2016], refinement types [Nico Lehmann and Éric Tanter, 2017; Niki Vazou et al., 2018], set-theoretic and union types [Castagna and Lanvin, 2017; Matías Toro and Éric Tanter, 2017], information-flow typing [Matías Toro et al., 2018], and parametric polymorphism [Matías Toro et al., 2019]. However, this methodology has never been applied to mutable references in isolation. Although Toro et al. [Matías Toro et al., 2018] apply AGT to a language with references, they only gradualize security levels of types (e.g. Ref Int_?), not whole types (e.g. Ref ? is not supported). In this article we answer the following open questions: Which semantics for gradually-type references follows by systematically applying AGT? Does AGT justify one of the existing approaches, or does it suggest yet another design? Can we recover other semantics for gradual references, if yes, how? This article first reviews the different existing gradual approaches to mutable references through examples. It then presents the semantics for gradual references that is obtained by applying AGT, and how to accommodate the other semantics. More specifically, this work makes the following contributions: - We present λ_REF~, a gradual language with support for mutable references. We derive λ_REF~ by applying the AGT methodology to a fully-static simple language with mutable references called λ_REF. This is the first application of AGT that focuses on gradually-typed mutable references. - We prove that λ_REF~ satisfies the gradual guarantee of Siek et al. [Siek et al., 2015]. We also present the first formal statement and proof of the conservative extension of the dynamic semantics of the static language [Siek et al., 2015], for a gradual language derived using AGT. - We prove that the derived language, λ_REF~, corresponds to the semantics of guarded references from HCC. Formally, given a λ_REF~ term and its compilation to HCC^+ (an adapted version of HCC extended with conditionals and binary operations) we prove that both terms are bisimilar, and that consequently they either both terminate, both fail, or both diverge. - We observe that λ_REF~ and HCC^+ differ in the order of combination of runtime checks. As a result, HCC is space efficient whereas λ_REF~ is not: we can write programs in λ_REF~ that may accumulate an unbounded number of checks. We formalize the changes needed in the dynamic semantics of λ_REF~ to achieve space efficiency. This technique to recover space efficiency is in fact independent from mutable references, and is therefore applicable to other gradual languages derived with AGT. - We formally describe how to support other gradual reference semantics in λ_REF~ by presenting λ_REF~^𝗉𝗆, an extension that additionally supports both permissive and monotonic references. Finally, we prove for the first time that monotonic references satisfy the dynamic gradual guarantee, a non-trivial result that requires careful consideration of updates to the store. Additionally, we implemented λ_REF~ as an interactive prototype that displays both typing derivations and reduction traces. All the examples mentioned in this paper are readily available in the online prototype available at https://pleiad.cl/grefs. As a result, this paper sheds further light on the design space of gradual languages with mutable references and contributes to deepening the understanding of the AGT methodology.

Cite as

Matías Toro and Éric Tanter. Abstracting Gradual References (SCICO Journal-first). In 34th European Conference on Object-Oriented Programming (ECOOP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 166, pp. 33:1-33:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{toro_et_al:LIPIcs.ECOOP.2020.33,
  author =	{Toro, Mat{\'\i}as and Tanter, \'{E}ric},
  title =	{{Abstracting Gradual References}},
  booktitle =	{34th European Conference on Object-Oriented Programming (ECOOP 2020)},
  pages =	{33:1--33:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-154-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{166},
  editor =	{Hirschfeld, Robert and Pape, Tobias},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.33},
  URN =		{urn:nbn:de:0030-drops-131900},
  doi =		{10.4230/LIPIcs.ECOOP.2020.33},
  annote =	{Keywords: Gradual Typing, Mutable References, Abstract interpretation}
}
Document
The Call-By-Value Lambda-Calculus with Generalized Applications

Authors: José Espírito Santo

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
The lambda-calculus with generalized applications is the Curry-Howard counterpart to the system of natural deduction with generalized elimination rules for intuitionistic implicational logic. In this paper we identify a call-by-value variant of the system and prove confluence, strong normalization, and standardization. In the end, we show that the cbn and cbv variants of the system simulate each other via mappings based on extensions of the "protecting-by-a-lambda" compilation technique.

Cite as

José Espírito Santo. The Call-By-Value Lambda-Calculus with Generalized Applications. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 35:1-35:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{espiritosanto:LIPIcs.CSL.2020.35,
  author =	{Esp{\'\i}rito Santo, Jos\'{e}},
  title =	{{The Call-By-Value Lambda-Calculus with Generalized Applications}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{35:1--35:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.35},
  URN =		{urn:nbn:de:0030-drops-116786},
  doi =		{10.4230/LIPIcs.CSL.2020.35},
  annote =	{Keywords: Generalized applications, Natural deduction, Strong normalization, Standardization, Call-by-name, Call-by-value, Protecting-by-a-lambda}
}
Document
On Sorting with a Network of Two Stacks

Authors: Matúš Mihalák and Marc Pont

Published in: OASIcs, Volume 75, 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)


Abstract
Sorting with stacks is a collection of problems that deal with sorting a sequence of numbers by pushing and popping the numbers to and from a given set of stacks. Multiple concrete decision or optimization questions are formed by restricting the access to the stacks. The motivation comes, e.g., from shunting train wagons in shunting yards, shunting trams in depots, or in stacking cargo containers on cargo ships or storage yards in transshipment terminals. We consider the problem of sorting a permutation of n integers 1,2,...,n using k >= 2 stacks. In this problem, elements from the input sequence are pushed one-by-one (in the order of the elements in the sequence) to one of the k stacks. At any time, an element from a stack can be popped and pushed to another stack; such an operation is called a shuffle. Also, at any time, an element can be popped from a stack and placed to the output sequence. We can only place the elements to the output in the increasing order of their value such that at the end the output is the ordered sequence of the elements. The problem asks to minimize the number of shuffles in the process. It is known that for k >= 4, the problem is NP-hard, and that there is no approximation algorithm unless P=NP. For k >= 3, it is known that at most O(n log n) shuffles are needed for any input sequence. For the case when k=2, there exist input sequences that require Omega(n^{2-epsilon}) shuffles, for any epsilon>0. Nothing substantially more is known for the case of k=2. In this paper, we study the following variant of the problem with k=2 stacks: no shuffle and no placement to the output sequence can happen before every element is in one of the two stacks. We show that our problem can be seen as the MinUnCut problem by providing a polynomial-time reduction, and thus we show that there exists a randomized O(sqrt{log n})-approximation algorithm and a deterministic O(log n)-approximation algorithm for our problem.

Cite as

Matúš Mihalák and Marc Pont. On Sorting with a Network of Two Stacks. In 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019). Open Access Series in Informatics (OASIcs), Volume 75, pp. 3:1-3:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{mihalak_et_al:OASIcs.ATMOS.2019.3,
  author =	{Mihal\'{a}k, Mat\'{u}\v{s} and Pont, Marc},
  title =	{{On Sorting with a Network of Two Stacks}},
  booktitle =	{19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)},
  pages =	{3:1--3:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-128-3},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{75},
  editor =	{Cacchiani, Valentina and Marchetti-Spaccamela, Alberto},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2019.3},
  URN =		{urn:nbn:de:0030-drops-114159},
  doi =		{10.4230/OASIcs.ATMOS.2019.3},
  annote =	{Keywords: Sorting, Stacks, Optimization, Algorithms, Reduction, MinUnCut}
}
Document
Modal Embeddings and Calling Paradigms

Authors: José Espírito Santo, Luís Pinto, and Tarmo Uustalu

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We study the computational interpretation of the two standard modal embeddings, usually named after Girard and Gödel, of intuitionistic logic into IS4. As source system we take either the call-by-name (cbn) or the call-by-value (cbv) lambda-calculus with simple types. The target system can be taken to be the, arguably, simplest fragment of IS4, here recast as a very simple lambda-calculus equipped with an indeterminate lax monoidal comonad. A slight refinement of the target and of the embeddings shows that: the target is a calculus indifferent to the calling paradigms cbn/cbv, obeying a new paradigm that we baptize call-by-box (cbb), and enjoying standardization; and that Girard’s (resp. Gödel’s) embbedding is a translation of cbn (resp. cbv) lambda-calculus into this calculus, using a compilation technique we call protecting-by-a-box, enjoying the preservation and reflection properties known for cps translations - but in a stronger form that allows the extraction of standardization for cbn or cbv as consequence of standardization for cbb. The modal target and embeddings achieve thus an unification of call-by-name and call-by-value as call-by-box.

Cite as

José Espírito Santo, Luís Pinto, and Tarmo Uustalu. Modal Embeddings and Calling Paradigms. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{espiritosanto_et_al:LIPIcs.FSCD.2019.18,
  author =	{Esp{\'\i}rito Santo, Jos\'{e} and Pinto, Lu{\'\i}s and Uustalu, Tarmo},
  title =	{{Modal Embeddings and Calling Paradigms}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.18},
  URN =		{urn:nbn:de:0030-drops-105256},
  doi =		{10.4230/LIPIcs.FSCD.2019.18},
  annote =	{Keywords: intuitionistic S4, call-by-name, call-by-value, comonadic lambda-calculus, standardization, indifference property}
}
Document
Partitioning Vectors into Quadruples: Worst-Case Analysis of a Matching-Based Algorithm

Authors: Annette M. C. Ficker, Thomas Erlebach, Matús Mihalák, and Frits C. R. Spieksma

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Consider a problem where 4k given vectors need to be partitioned into k clusters of four vectors each. A cluster of four vectors is called a quad, and the cost of a quad is the sum of the component-wise maxima of the four vectors in the quad. The problem is to partition the given 4k vectors into k quads with minimum total cost. We analyze a straightforward matching-based algorithm and prove that this algorithm is a 3/2-approximation algorithm for this problem. We further analyze the performance of this algorithm on a hierarchy of special cases of the problem and prove that, in one particular case, the algorithm is a 5/4-approximation algorithm. Our analysis is tight in all cases except one.

Cite as

Annette M. C. Ficker, Thomas Erlebach, Matús Mihalák, and Frits C. R. Spieksma. Partitioning Vectors into Quadruples: Worst-Case Analysis of a Matching-Based Algorithm. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 45:1-45:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ficker_et_al:LIPIcs.ISAAC.2018.45,
  author =	{Ficker, Annette M. C. and Erlebach, Thomas and Mihal\'{a}k, Mat\'{u}s and Spieksma, Frits C. R.},
  title =	{{Partitioning Vectors into Quadruples: Worst-Case Analysis of a Matching-Based Algorithm}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{45:1--45:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.45},
  URN =		{urn:nbn:de:0030-drops-99933},
  doi =		{10.4230/LIPIcs.ISAAC.2018.45},
  annote =	{Keywords: approximation algorithm, matching, clustering problem}
}
Document
Parametricity, Automorphisms of the Universe, and Excluded Middle

Authors: Auke B. Booij, Martín H. Escardó, Peter LeFanu Lumsdaine, and Michael Shulman

Published in: LIPIcs, Volume 97, 22nd International Conference on Types for Proofs and Programs (TYPES 2016)


Abstract
It is known that one can construct non-parametric functions by assuming classical axioms. Our work is a converse to that: we prove classical axioms in dependent type theory assuming specific instances of non-parametricity. We also address the interaction between classical axioms and the existence of automorphisms of a type universe. We work over intensional Martin-Löf dependent type theory, and for some results assume further principles including function extensionality, propositional extensionality, propositional truncation, and the univalence axiom.

Cite as

Auke B. Booij, Martín H. Escardó, Peter LeFanu Lumsdaine, and Michael Shulman. Parametricity, Automorphisms of the Universe, and Excluded Middle. In 22nd International Conference on Types for Proofs and Programs (TYPES 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 97, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{booij_et_al:LIPIcs.TYPES.2016.7,
  author =	{Booij, Auke B. and Escard\'{o}, Mart{\'\i}n H. and Lumsdaine, Peter LeFanu and Shulman, Michael},
  title =	{{Parametricity, Automorphisms of the Universe, and Excluded Middle}},
  booktitle =	{22nd International Conference on Types for Proofs and Programs (TYPES 2016)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-065-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{97},
  editor =	{Ghilezan, Silvia and Geuvers, Herman and Ivetic, Jelena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2016.7},
  URN =		{urn:nbn:de:0030-drops-98554},
  doi =		{10.4230/LIPIcs.TYPES.2016.7},
  annote =	{Keywords: relational parametricity, dependent type theory, univalent foundations, homotopy type theory, excluded middle, classical mathematics, constructive mat}
}
Document
A Recursion-Theoretic Characterisation of the Positive Polynomial-Time Functions

Authors: Anupam Das and Isabel Oitavem

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
We extend work of Lautemann, Schwentick and Stewart [Clemens Lautemann et al., 1996] on characterisations of the "positive" polynomial-time predicates (posP, also called mP by Grigni and Sipser [Grigni and Sipser, 1992]) to function classes. Our main result is the obtention of a function algebra for the positive polynomial-time functions (posFP) by imposing a simple uniformity constraint on the bounded recursion operator in Cobham's characterisation of FP. We show that a similar constraint on a function algebra based on safe recursion, in the style of Bellantoni and Cook [Stephen Bellantoni and Stephen A. Cook, 1992], yields an "implicit" characterisation of posFP, mentioning neither explicit bounds nor explicit monotonicity constraints.

Cite as

Anupam Das and Isabel Oitavem. A Recursion-Theoretic Characterisation of the Positive Polynomial-Time Functions. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.CSL.2018.18,
  author =	{Das, Anupam and Oitavem, Isabel},
  title =	{{A Recursion-Theoretic Characterisation of the Positive Polynomial-Time Functions}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.18},
  URN =		{urn:nbn:de:0030-drops-96851},
  doi =		{10.4230/LIPIcs.CSL.2018.18},
  annote =	{Keywords: Monotone complexity, Positive complexity, Function classes, Function algebras, Recursion-theoretic characterisations, Implicit complexity, Logic}
}
Document
Collective Fast Delivery by Energy-Efficient Agents

Authors: Andreas Bärtschi, Daniel Graf, and Matús Mihalák

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
We consider k mobile agents initially located at distinct nodes of an undirected graph (on n nodes, with edge lengths). The agents have to deliver a single item from a given source node s to a given target node t. The agents can move along the edges of the graph, starting at time 0, with respect to the following: Each agent i has a weight omega_i that defines the rate of energy consumption while travelling a distance in the graph, and a velocity upsilon_i with which it can move. We are interested in schedules (operating the k agents) that result in a small delivery time T (time when the item arrives at t), and small total energy consumption E. Concretely, we ask for a schedule that: either (i) Minimizes T, (ii) Minimizes lexicographically (T,E) (prioritizing fast delivery), or (iii) Minimizes epsilon * T + (1-epsilon)* E, for a given epsilon in (0,1). We show that (i) is solvable in polynomial time, and show that (ii) is polynomial-time solvable for uniform velocities and solvable in time O(n+k log k) for arbitrary velocities on paths, but in general is NP-hard even on planar graphs. As a corollary of our hardness result, (iii) is NP-hard, too. We show that there is a 2-approximation algorithm for (iii) using a single agent.

Cite as

Andreas Bärtschi, Daniel Graf, and Matús Mihalák. Collective Fast Delivery by Energy-Efficient Agents. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 56:1-56:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bartschi_et_al:LIPIcs.MFCS.2018.56,
  author =	{B\"{a}rtschi, Andreas and Graf, Daniel and Mihal\'{a}k, Mat\'{u}s},
  title =	{{Collective Fast Delivery by Energy-Efficient Agents}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{56:1--56:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.56},
  URN =		{urn:nbn:de:0030-drops-96381},
  doi =		{10.4230/LIPIcs.MFCS.2018.56},
  annote =	{Keywords: delivery, mobile agents, time/energy optimization, complexity, algorithms}
}
Document
A Unifying Framework for Type Inhabitation

Authors: Sandra Alves and Sabine Broda

Published in: LIPIcs, Volume 108, 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)


Abstract
In this paper we define a framework to address different kinds of problems related to type inhabitation, such as type checking, the emptiness problem, generation of inhabitants and counting, in a uniform way. Our framework uses an alternative representation for types, called the pre-grammar of the type, on which different methods for these problems are based. Furthermore, we define a scheme for a decision algorithm that, for particular instantiations of the parameters, can be used to show different inhabitation related problems to be in PSPACE.

Cite as

Sandra Alves and Sabine Broda. A Unifying Framework for Type Inhabitation. In 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 108, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{alves_et_al:LIPIcs.FSCD.2018.5,
  author =	{Alves, Sandra and Broda, Sabine},
  title =	{{A Unifying Framework for Type Inhabitation}},
  booktitle =	{3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-077-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{108},
  editor =	{Kirchner, H\'{e}l\`{e}ne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2018.5},
  URN =		{urn:nbn:de:0030-drops-91758},
  doi =		{10.4230/LIPIcs.FSCD.2018.5},
  annote =	{Keywords: simple types, type inhabitation, rewriting, PSPACE}
}
Document
Generating Method Documentation Using Concrete Values from Executions

Authors: Matúš Sulír and Jaroslav Porubän

Published in: OASIcs, Volume 56, 6th Symposium on Languages, Applications and Technologies (SLATE 2017)


Abstract
There exist multiple automated approaches of source code documentation generation. They often describe methods in abstract terms, using the words contained in the static source code or code excerpts from repositories. In this paper, we introduce DynamiDoc - a simple yet effective automated documentation approach based on dynamic analysis. It traces the program being executed and records string representations of concrete argument values, a return value, and a target object state before and after each method execution. Then for every concerned method, it generates documentation sentences containing examples, such as "When called on [3, 1.2] with element = 3, the object changed to [1.2]". A qualitative evaluation is performed, listing advantages and shortcomings of the approach.

Cite as

Matúš Sulír and Jaroslav Porubän. Generating Method Documentation Using Concrete Values from Executions. In 6th Symposium on Languages, Applications and Technologies (SLATE 2017). Open Access Series in Informatics (OASIcs), Volume 56, pp. 3:1-3:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{sulir_et_al:OASIcs.SLATE.2017.3,
  author =	{Sul{\'\i}r, Mat\'{u}\v{s} and Porub\"{a}n, Jaroslav},
  title =	{{Generating Method Documentation Using Concrete Values from Executions}},
  booktitle =	{6th Symposium on Languages, Applications and Technologies (SLATE 2017)},
  pages =	{3:1--3:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-056-9},
  ISSN =	{2190-6807},
  year =	{2017},
  volume =	{56},
  editor =	{Queir\'{o}s, Ricardo and Pinto, M\'{a}rio and Sim\~{o}es, Alberto and Leal, Jos\'{e} Paulo and Varanda, Maria Jo\~{a}o},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2017.3},
  URN =		{urn:nbn:de:0030-drops-79398},
  doi =		{10.4230/OASIcs.SLATE.2017.3},
  annote =	{Keywords: documentation generation, source code summarization, methods, dynamic analysis, examples}
}
Document
Locating User Interface Concepts in Source Code

Authors: Matúš Sulír and Jaroslav Porubän

Published in: OASIcs, Volume 51, 5th Symposium on Languages, Applications and Technologies (SLATE'16) (2016)


Abstract
Developers often start their work by exploring a graphical user interface (GUI) of a program. They spot a textual label of interest in the GUI and try to find it in the source code, as a straightforward way of feature location. We performed a study on four Java applications, asking a simple question: Are strings displayed in the GUI of a running program present in its source code? We came to a conclusion that the majority of strings are present there; they occur mainly in Java and "properties" files.

Cite as

Matúš Sulír and Jaroslav Porubän. Locating User Interface Concepts in Source Code. In 5th Symposium on Languages, Applications and Technologies (SLATE'16). Open Access Series in Informatics (OASIcs), Volume 51, pp. 6:1-6:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{sulir_et_al:OASIcs.SLATE.2016.6,
  author =	{Sul{\'\i}r, Mat\'{u}\v{s} and Porub\"{a}n, Jaroslav},
  title =	{{Locating User Interface Concepts in Source Code}},
  booktitle =	{5th Symposium on Languages, Applications and Technologies (SLATE'16)},
  pages =	{6:1--6:9},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-006-4},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{51},
  editor =	{Mernik, Marjan and Leal, Jos\'{e} Paulo and Gon\c{c}alo Oliveira, Hugo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2016.6},
  URN =		{urn:nbn:de:0030-drops-60110},
  doi =		{10.4230/OASIcs.SLATE.2016.6},
  annote =	{Keywords: Source code, graphical user interfaces, feature location}
}
  • Refine by Author
  • 6 Mihalák, Matús
  • 4 Mihalák, Matúš
  • 3 Widmayer, Peter
  • 2 Araújo, João
  • 2 Böhmová, Katerina
  • Show More...

  • Refine by Classification
  • 2 Computing methodologies
  • 2 Mathematics of computing → Approximation algorithms
  • 2 Theory of computation → Constraint and logic programming
  • 2 Theory of computation → Lambda calculus
  • 2 Theory of computation → Program semantics
  • Show More...

  • Refine by Keyword
  • 3 Algorithms
  • 3 Optimization
  • 3 algorithms
  • 3 complexity
  • 2 Public transportation
  • Show More...

  • Refine by Type
  • 35 document

  • Refine by Publication Year
  • 13 2014
  • 5 2018
  • 3 2023
  • 2 2015
  • 2 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail