718 Search Results for "T�rker, Can"


Document
Range Entropy Queries and Partitioning

Authors: Sanjay Krishnan and Stavros Sintos

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Data partitioning that maximizes or minimizes Shannon entropy is a crucial subroutine in data compression, columnar storage, and cardinality estimation algorithms. These partition algorithms can be accelerated if we have a data structure to find the entropy in different subsets of data when the algorithm needs to decide what block to construct. While it is generally known how to compute the entropy of a discrete distribution efficiently, we want to efficiently derive the entropy among the data items that lie in a specific area. We solve this problem in a typical setting when we deal with real data, where data items are geometric points and each requested area is a query (hyper)rectangle. More specifically, we consider a set P of n weighted and colored points in ℝ^d. The goal is to construct a low space data structure, such that given a query (hyper)rectangle R, it computes the entropy based on the colors of the points in P∩ R, in sublinear time. We show a conditional lower bound for this problem proving that we cannot hope for data structures with near-linear space and near-constant query time. Then, we propose exact data structures for d = 1 and d > 1 with o(n^{2d}) space and o(n) query time. We also provide a tune parameter t that the user can choose to bound the asymptotic space and query time of the new data structures. Next, we propose near linear space data structures for returning either an additive or a multiplicative approximation of the entropy. Finally, we show how we can use the new data structures to efficiently partition time series and histograms with respect to entropy.

Cite as

Sanjay Krishnan and Stavros Sintos. Range Entropy Queries and Partitioning. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{krishnan_et_al:LIPIcs.ICDT.2024.6,
  author =	{Krishnan, Sanjay and Sintos, Stavros},
  title =	{{Range Entropy Queries and Partitioning}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.6},
  URN =		{urn:nbn:de:0030-drops-197883},
  doi =		{10.4230/LIPIcs.ICDT.2024.6},
  annote =	{Keywords: Shannon entropy, range query, data structure, data partitioning}
}
Document
Testing Equivalence to Design Polynomials

Authors: Omkar Baraskar, Agrim Dewan, and Chandan Saha

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
An n-variate polynomial g of degree d is a (n,d,t) design polynomial if the degree of the gcd of every pair of monomials of g is at most t-1. The power symmetric polynomial PSym_{n,d} : = ∑_{i = 1}ⁿ x^d_i and the sum-product polynomial SP_{s,d} : = ∑_{i = 1}^{s}∏_{j = 1}^{d} x_{i,j} are instances of design polynomials for t = 1. Another example is the Nisan-Wigderson design polynomial NW, which has been used extensively to prove various arithmetic circuit lower bounds. Given black-box access to an n-variate, degree-d polynomial f(𝐱) ∈ 𝔽[𝐱], how fast can we check if there exist an A ∈ GL(n, 𝔽) and a 𝐛 ∈ 𝔽ⁿ such that f(A𝐱+𝐛) is a (n,d,t) design polynomial? We call this problem "testing equivalence to design polynomials", or alternatively, "equivalence testing for design polynomials". In this work, we present a randomized algorithm that finds (A, 𝐛) such that f(A𝐱+𝐛) is a (n,d,t) design polynomial, if such A and 𝐛 exist, provided t ≤ d/3. The algorithm runs in (nd)^O(t) time and works over any sufficiently large 𝔽 of characteristic 0 or > d. As applications of this test, we show two results - one is structural and the other is algorithmic. The structural result establishes a polynomial-time equivalence between the graph isomorphism problem and the polynomial equivalence problem for design polynomials. The algorithmic result implies that Patarin’s scheme (EUROCRYPT 1996) can be broken in quasi-polynomial time if a random sparse polynomial is used in the key generation phase. We also give an efficient learning algorithm for n-variate random affine projections of multilinear degree-d design polynomials, provided n ≥ d⁴. If one obtains an analogous result under the weaker assumption "n ≥ d^ε, for any ε > 0", then the NW family is not VNP-complete unless there is a VNP-complete family whose random affine projections are learnable. It is not known if random affine projections of the permanent are learnable. The above algorithms are obtained by using the vector space decomposition framework, introduced by Kayal and Saha (STOC 2019) and Garg, Kayal and Saha (FOCS 2020), for learning non-degenerate arithmetic circuits. A key technical difference between the analysis in the papers by Garg, Kayal and Saha (FOCS 2020) and Bhargava, Garg, Kayal and Saha (RANDOM 2022) and the analysis here is that a certain adjoint algebra, which turned out to be trivial (i.e., diagonalizable) in prior works, is non-trivial in our case. However, we show that the adjoint arising here is triangularizable which then helps in carrying out the vector space decomposition step.

Cite as

Omkar Baraskar, Agrim Dewan, and Chandan Saha. Testing Equivalence to Design Polynomials. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 9:1-9:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.STACS.2024.9,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan},
  title =	{{Testing Equivalence to Design Polynomials}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{9:1--9:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.9},
  URN =		{urn:nbn:de:0030-drops-197193},
  doi =		{10.4230/LIPIcs.STACS.2024.9},
  annote =	{Keywords: Polynomial equivalence, design polynomials, graph isomorphism, vector space decomposition}
}
Document
Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form

Authors: Christoph Berkholz, Dietrich Kuske, and Christian Schwarz

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Is it possible to write significantly smaller formulae, when using more Boolean operators in addition to the De Morgan basis (and, or, not)? For propositional logic a negative answer was given by Pratt: every formula with additional operators can be translated to the De Morgan basis with only polynomial increase in size. Surprisingly, for modal logic the picture is different: we show that adding bi-implication allows to write exponentially smaller formulae. Moreover, we provide a complete classification of finite sets of Boolean operators showing they are either of no help (allow polynomial translations to the De Morgan basis) or can express properties as succinct as modal logic with additional bi-implication. More precisely, these results are shown for the modal logic T (and therefore for K). We complement this result showing that the modal logic S5 behaves as propositional logic: no additional Boolean operators make it possible to write significantly smaller formulae.

Cite as

Christoph Berkholz, Dietrich Kuske, and Christian Schwarz. Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berkholz_et_al:LIPIcs.STACS.2024.12,
  author =	{Berkholz, Christoph and Kuske, Dietrich and Schwarz, Christian},
  title =	{{Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.12},
  URN =		{urn:nbn:de:0030-drops-197228},
  doi =		{10.4230/LIPIcs.STACS.2024.12},
  annote =	{Keywords: succinctness, modal logic}
}
Document
Temporalizing Digraphs via Linear-Size Balanced Bi-Trees

Authors: Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In a directed graph D on vertex set v₁,… ,v_n, a forward arc is an arc v_iv_j where i < j. A pair v_i,v_j is forward connected if there is a directed path from v_i to v_j consisting of forward arcs. In the Forward Connected Pairs Problem (FCPP), the input is a strongly connected digraph D, and the output is the maximum number of forward connected pairs in some vertex enumeration of D. We show that FCPP is in APX, as one can efficiently enumerate the vertices of D in order to achieve a quadratic number of forward connected pairs. For this, we construct a linear size balanced bi-tree T (an out-branching and an in-branching with same size and same root which are vertex disjoint in the sense that they share no vertex apart from their common root). The existence of such a T was left as an open problem (Brunelli, Crescenzi, Viennot, Networks 2023) motivated by the study of temporal paths in temporal networks. More precisely, T can be constructed in quadratic time (in the number of vertices) and has size at least n/3. The algorithm involves a particular depth-first search tree (Left-DFS) of independent interest, and shows that every strongly connected directed graph has a balanced separator which is a circuit. Remarkably, in the request version RFCPP of FCPP, where the input is a strong digraph D and a set of requests R consisting of pairs {x_i,y_i}, there is no constant c > 0 such that one can always find an enumeration realizing c.|R| forward connected pairs {x_i,y_i} (in either direction).

Cite as

Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot. Temporalizing Digraphs via Linear-Size Balanced Bi-Trees. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.STACS.2024.13,
  author =	{Bessy, St\'{e}phane and Thomass\'{e}, St\'{e}phan and Viennot, Laurent},
  title =	{{Temporalizing Digraphs via Linear-Size Balanced Bi-Trees}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{13:1--13:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.13},
  URN =		{urn:nbn:de:0030-drops-197235},
  doi =		{10.4230/LIPIcs.STACS.2024.13},
  annote =	{Keywords: digraph, temporal graph, temporalization, bi-tree, #1\{in-branching, out-branching, in-tree, out-tree\}, forward connected pairs, left-maximal DFS}
}
Document
Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters

Authors: Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Local certification is a distributed mechanism enabling the nodes of a network to check the correctness of the current configuration, thanks to small pieces of information called certificates. For many classic global properties, like checking the acyclicity of the network, the optimal size of the certificates depends on the size of the network, n. In this paper, we focus on properties for which the size of the certificates does not depend on n but on other parameters. We focus on three such important properties and prove tight bounds for all of them. Namely, we prove that the optimal certification size is: Θ(log k) for k-colorability (and even exactly ⌈ log k ⌉ bits in the anonymous model while previous works had only proved a 2-bit lower bound); (1/2)log t+o(log t) for dominating sets at distance t (an unexpected and tighter-than-usual bound) ; and Θ(log Δ) for perfect matching in graphs of maximum degree Δ (the first non-trivial bound parameterized by Δ). We also prove some surprising upper bounds, for example, certifying the existence of a perfect matching in a planar graph can be done with only two bits. In addition, we explore various specific cases for these properties, in particular improving our understanding of the trade-off between locality of the verification and certificate size.

Cite as

Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun. Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2024.21,
  author =	{Bousquet, Nicolas and Feuilloley, Laurent and Zeitoun, S\'{e}bastien},
  title =	{{Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.21},
  URN =		{urn:nbn:de:0030-drops-197317},
  doi =		{10.4230/LIPIcs.STACS.2024.21},
  annote =	{Keywords: Local certification, local properties, proof-labeling schemes, locally checkable proofs, optimal certification size, colorability, dominating set, perfect matching, fault-tolerance, graph structure}
}
Document
Fault-tolerant k-Supplier with Outliers

Authors: Deeparnab Chakrabarty, Luc Cote, and Ankita Sarkar

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We present approximation algorithms for the Fault-tolerant k-Supplier with Outliers (FkSO) problem. This is a common generalization of two known problems - k-Supplier with Outliers, and Fault-tolerant k-Supplier - each of which generalize the well-known k-Supplier problem. In the k-Supplier problem the goal is to serve n clients C, by opening k facilities from a set of possible facilities F; the objective function is the farthest that any client must travel to access an open facility. In FkSO, each client v has a fault-tolerance 𝓁_v, and now desires 𝓁_v facilities to serve it; so each client v’s contribution to the objective function is now its distance to the 𝓁_v^th closest open facility. Furthermore, we are allowed to choose m clients that we will serve, and only those clients contribute to the objective function, while the remaining n-m are considered outliers. Our main result is a (4t-1)-approximation for the FkSO problem, where t is the number of distinct values of 𝓁_v that appear in the instance. At t = 1, i.e. in the case where the 𝓁_v’s are uniformly some 𝓁, this yields a 3-approximation, improving upon the 11-approximation given for the uniform case by Inamdar and Varadarajan [2020], who also introduced the problem. Our result for the uniform case matches tight 3-approximations that exist for k-Supplier, k-Supplier with Outliers, and Fault-tolerant k-Supplier. Our key technical contribution is an application of the round-or-cut schema to FkSO. Guided by an LP relaxation, we reduce to a simpler optimization problem, which we can solve to obtain distance bounds for the "round" step, and valid inequalities for the "cut" step. By varying how we reduce to the simpler problem, we get varying distance bounds - we include a variant that gives a (2^t + 1)-approximation, which is better for t ∈ {2,3}. In addition, for t = 1, we give a more straightforward application of round-or-cut, yielding a 3-approximation that is much simpler than our general algorithm.

Cite as

Deeparnab Chakrabarty, Luc Cote, and Ankita Sarkar. Fault-tolerant k-Supplier with Outliers. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakrabarty_et_al:LIPIcs.STACS.2024.23,
  author =	{Chakrabarty, Deeparnab and Cote, Luc and Sarkar, Ankita},
  title =	{{Fault-tolerant k-Supplier with Outliers}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.23},
  URN =		{urn:nbn:de:0030-drops-197336},
  doi =		{10.4230/LIPIcs.STACS.2024.23},
  annote =	{Keywords: Clustering, approximation algorithms, round-or-cut}
}
Document
Approximate Circular Pattern Matching Under Edit Distance

Authors: Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the k-Edit Circular Pattern Matching (k-Edit CPM) problem, we are given a length-n text T, a length-m pattern P, and a positive integer threshold k, and we are to report all starting positions of the substrings of T that are at edit distance at most k from some cyclic rotation of P. In the decision version of the problem, we are to check if any such substring exists. Very recently, Charalampopoulos et al. [ESA 2022] presented 𝒪(nk²)-time and 𝒪(nk log³ k)-time solutions for the reporting and decision versions of k-Edit CPM, respectively. Here, we show that the reporting and decision versions of k-Edit CPM can be solved in 𝒪(n+(n/m) k⁶) time and 𝒪(n+(n/m) k⁵ log³ k) time, respectively, thus obtaining the first algorithms with a complexity of the type 𝒪(n+(n/m) poly(k)) for this problem. Notably, our algorithms run in 𝒪(n) time when m = Ω(k⁶) and are superior to the previous respective solutions when m = ω(k⁴). We provide a meta-algorithm that yields efficient algorithms in several other interesting settings, such as when the strings are given in a compressed form (as straight-line programs), when the strings are dynamic, or when we have a quantum computer. We obtain our solutions by exploiting the structure of approximate circular occurrences of P in T, when T is relatively short w.r.t. P. Roughly speaking, either the starting positions of approximate occurrences of rotations of P form 𝒪(k⁴) intervals that can be computed efficiently, or some rotation of P is almost periodic (is at a small edit distance from a string with small period). Dealing with the almost periodic case is the most technically demanding part of this work; we tackle it using properties of locked fragments (originating from [Cole and Hariharan, SICOMP 2002]).

Cite as

Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba. Approximate Circular Pattern Matching Under Edit Distance. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.STACS.2024.24,
  author =	{Charalampopoulos, Panagiotis and Pissis, Solon P. and Radoszewski, Jakub and Rytter, Wojciech and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Approximate Circular Pattern Matching Under Edit Distance}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{24:1--24:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.24},
  URN =		{urn:nbn:de:0030-drops-197346},
  doi =		{10.4230/LIPIcs.STACS.2024.24},
  annote =	{Keywords: circular pattern matching, approximate pattern matching, edit distance}
}
Document
Depth-3 Circuit Lower Bounds for k-OV

Authors: Tameem Choudhury and Karteek Sreenivasaiah

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The 2-Orthogonal Vectors (2-OV) problem is the following: given two tuples A and B of n Boolean vectors, each of dimension d, decide if there exist vectors u ∈ A, and v ∈ B, such that u and v are orthogonal. This problem, and its generalization k-OV defined analogously for k tuples, are central problems in the area of fine-grained complexity. One of the major conjectures in fine-grained complexity is that k-OV cannot be solved by a randomised algorithm in n^{k-ε}poly(d) time for any constant ε > 0. In this paper, we are interested in unconditional lower bounds against k-OV, but for weaker models of computation than the general Turing Machine. In particular, we are interested in circuit lower bounds to computing k-OV by Boolean circuit families of depth 3 of the form OR-AND-OR, or equivalently, a disjunction of CNFs. We show that for all k ≤ d, any disjunction of t-CNFs computing k-OV requires size Ω((n/t)^k). In particular, when k is a constant, any disjunction of k-CNFs computing k-OV needs to use Ω(n^k) CNFs. This matches the brute-force construction, and for each fixed k > 2, this is the first unconditional Ω(n^k) lower bound against k-OV for a computation model that can compute it in size O(n^k). Our results partially resolve a conjecture by Kane and Williams [Daniel M. Kane and Richard Ryan Williams, 2019] (page 12, conjecture 10) about depth-3 AC⁰ circuits computing 2-OV. As a secondary result, we show an exponential lower bound on the size of AND∘OR∘AND circuits computing 2-OV when d is very large. Since 2-OV reduces to k-OV by projections trivially, this lower bound works against k-OV as well.

Cite as

Tameem Choudhury and Karteek Sreenivasaiah. Depth-3 Circuit Lower Bounds for k-OV. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{choudhury_et_al:LIPIcs.STACS.2024.25,
  author =	{Choudhury, Tameem and Sreenivasaiah, Karteek},
  title =	{{Depth-3 Circuit Lower Bounds for k-OV}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.25},
  URN =		{urn:nbn:de:0030-drops-197359},
  doi =		{10.4230/LIPIcs.STACS.2024.25},
  annote =	{Keywords: fine grained complexity, k-OV, circuit lower bounds, depth-3 circuits}
}
Document
On the Power of Border Width-2 ABPs over Fields of Characteristic 2

Authors: Pranjal Dutta, Christian Ikenmeyer, Balagopal Komarath, Harshil Mittal, Saraswati Girish Nanoti, and Dhara Thakkar

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The celebrated result by Ben-Or and Cleve [SICOMP92] showed that algebraic formulas are polynomially equivalent to width-3 algebraic branching programs (ABP) for computing polynomials. i.e., VF = VBP₃. Further, there are simple polynomials, such as ∑_{i = 1}⁸ x_i y_i, that cannot be computed by width-2 ABPs [Allender and Wang, CC16]. Bringmann, Ikenmeyer and Zuiddam, [JACM18], on the other hand, studied these questions in the setting of approximate (i.e., border complexity) computation, and showed the universality of border width-2 ABPs, over fields of characteristic ≠ 2. In particular, they showed that polynomials that can be approximated by formulas can also be approximated (with only a polynomial blowup in size) by width-2 ABPs, i.e., VF ̅ = VBP₂ ̅. The power of border width-2 algebraic branching programs when the characteristic of the field is 2 was left open. In this paper, we show that width-2 ABPs can approximate every polynomial irrespective of the field characteristic. We show that any polynomial f with 𝓁 monomials and with at most t odd-power indeterminates per monomial can be approximated by 𝒪(𝓁⋅ (deg(f)+2^t))-size width-2 ABPs. Since 𝓁 and t are finite, this proves universality of border width-2 ABPs. For univariate polynomials, we improve this upper-bound from O(deg(f)²) to O(deg(f)). Moreover, we show that, if a polynomial f can be approximated by small formulas, then the polynomial f^d, for some small power d, can be approximated by small width-2 ABPs. Therefore, even over fields of characteristic two, border width-2 ABPs are a reasonably powerful computational model. Our construction works over any field.

Cite as

Pranjal Dutta, Christian Ikenmeyer, Balagopal Komarath, Harshil Mittal, Saraswati Girish Nanoti, and Dhara Thakkar. On the Power of Border Width-2 ABPs over Fields of Characteristic 2. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dutta_et_al:LIPIcs.STACS.2024.31,
  author =	{Dutta, Pranjal and Ikenmeyer, Christian and Komarath, Balagopal and Mittal, Harshil and Nanoti, Saraswati Girish and Thakkar, Dhara},
  title =	{{On the Power of Border Width-2 ABPs over Fields of Characteristic 2}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.31},
  URN =		{urn:nbn:de:0030-drops-197419},
  doi =		{10.4230/LIPIcs.STACS.2024.31},
  annote =	{Keywords: Algebraic branching programs, border complexity, characteristic 2}
}
Document
On the Exact Matching Problem in Dense Graphs

Authors: Nicolas El Maalouly, Sebastian Haslebacher, and Lasse Wulf

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the Exact Matching problem, we are given a graph whose edges are colored red or blue and the task is to decide for a given integer k, if there is a perfect matching with exactly k red edges. Since 1987 it is known that the Exact Matching Problem can be solved in randomized polynomial time. Despite numerous efforts, it is still not known today whether a deterministic polynomial-time algorithm exists as well. In this paper, we make substantial progress by solving the problem for a multitude of different classes of dense graphs. We solve the Exact Matching problem in deterministic polynomial time for complete r-partite graphs, for unit interval graphs, for bipartite unit interval graphs, for graphs of bounded neighborhood diversity, for chain graphs, and for graphs without a complete bipartite t-hole. We solve the problem in quasi-polynomial time for Erdős-Rényi random graphs G(n, 1/2). We also reprove an earlier result for bounded independence number/bipartite independence number. We use two main tools to obtain these results: A local search algorithm as well as a generalization of an earlier result by Karzanov.

Cite as

Nicolas El Maalouly, Sebastian Haslebacher, and Lasse Wulf. On the Exact Matching Problem in Dense Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{elmaalouly_et_al:LIPIcs.STACS.2024.33,
  author =	{El Maalouly, Nicolas and Haslebacher, Sebastian and Wulf, Lasse},
  title =	{{On the Exact Matching Problem in Dense Graphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{33:1--33:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.33},
  URN =		{urn:nbn:de:0030-drops-197437},
  doi =		{10.4230/LIPIcs.STACS.2024.33},
  annote =	{Keywords: Exact Matching, Perfect Matching, Red-Blue Matching, Bounded Color Matching, Local Search, Derandomization}
}
Document
Arena-Independent Memory Bounds for Nash Equilibria in Reachability Games

Authors: James C. A. Main

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We study the memory requirements of Nash equilibria in turn-based multiplayer games on possibly infinite graphs with reachability, shortest path and Büchi objectives. We present constructions for finite-memory Nash equilibria in these games that apply to arbitrary game graphs, bypassing the finite-arena requirement that is central in existing approaches. We show that, for these three types of games, from any Nash equilibrium, we can derive another Nash equilibrium where all strategies are finite-memory such that the same players accomplish their objective, without increasing their cost for shortest path games. Furthermore, we provide memory bounds that are independent of the size of the game graph for reachability and shortest path games. These bounds depend only on the number of players. To the best of our knowledge, we provide the first results pertaining to finite-memory constrained Nash equilibria in infinite arenas and the first arena-independent memory bounds for Nash equilibria.

Cite as

James C. A. Main. Arena-Independent Memory Bounds for Nash Equilibria in Reachability Games. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 50:1-50:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{main:LIPIcs.STACS.2024.50,
  author =	{Main, James C. A.},
  title =	{{Arena-Independent Memory Bounds for Nash Equilibria in Reachability Games}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{50:1--50:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.50},
  URN =		{urn:nbn:de:0030-drops-197603},
  doi =		{10.4230/LIPIcs.STACS.2024.50},
  annote =	{Keywords: multiplayer games on graphs, Nash equilibrium, finite-memory strategies}
}
Document
Shortest Two Disjoint Paths in Conservative Graphs

Authors: Ildikó Schlotter

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We consider the following problem that we call the Shortest Two Disjoint Paths problem: given an undirected graph G = (V,E) with edge weights w:E → ℝ, two terminals s and t in G, find two internally vertex-disjoint paths between s and t with minimum total weight. As shown recently by Schlotter and Sebő (2022), this problem becomes NP-hard if edges can have negative weights, even if the weight function is conservative, i.e., there are no cycles in G with negative total weight. We propose a polynomial-time algorithm that solves the Shortest Two Disjoint Paths problem for conservative weights in the case when the negative-weight edges form a constant number of trees in G.

Cite as

Ildikó Schlotter. Shortest Two Disjoint Paths in Conservative Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 57:1-57:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schlotter:LIPIcs.STACS.2024.57,
  author =	{Schlotter, Ildik\'{o}},
  title =	{{Shortest Two Disjoint Paths in Conservative Graphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{57:1--57:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.57},
  URN =		{urn:nbn:de:0030-drops-197678},
  doi =		{10.4230/LIPIcs.STACS.2024.57},
  annote =	{Keywords: Shortest paths, disjoint paths, conservative weights, graph algorithm}
}
Document
Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

Authors: Melissa Antonelli, Ugo Dal Lago, Davide Davoli, Isabel Oitavem, and Paolo Pistone

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We consider a minimal extension of the language of arithmetic, such that the bounded formulas provably total in a suitably-defined theory à la Buss (expressed in this new language) precisely capture polytime random functions. Then, we provide two new characterizations of the semantic class BPP obtained by internalizing the error-bound check within a logical system: the first relies on measure-sensitive quantifiers, while the second is based on standard first-order quantification. This leads us to introduce a family of effectively enumerable subclasses of BPP, called BPP_T and consisting of languages captured by those probabilistic Turing machines whose underlying error can be proved bounded in T. As a paradigmatic example of this approach, we establish that polynomial identity testing is in BPP_T, where T = IΔ₀+Exp is a well-studied theory based on bounded induction.

Cite as

Melissa Antonelli, Ugo Dal Lago, Davide Davoli, Isabel Oitavem, and Paolo Pistone. Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{antonelli_et_al:LIPIcs.CSL.2024.10,
  author =	{Antonelli, Melissa and Dal Lago, Ugo and Davoli, Davide and Oitavem, Isabel and Pistone, Paolo},
  title =	{{Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.10},
  URN =		{urn:nbn:de:0030-drops-196538},
  doi =		{10.4230/LIPIcs.CSL.2024.10},
  annote =	{Keywords: Bounded Arithmetic, Randomized Computation, Implicit Computational Complexity}
}
Document
The Worst-Case Complexity of Symmetric Strategy Improvement

Authors: Tom van Dijk, Georg Loho, and Matthew T. Maat

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
Symmetric strategy improvement is an algorithm introduced by Schewe et al. (ICALP 2015) that can be used to solve two-player games on directed graphs such as parity games and mean payoff games. In contrast to the usual well-known strategy improvement algorithm, it iterates over strategies of both players simultaneously. The symmetric version solves the known worst-case examples for strategy improvement quickly, however its worst-case complexity remained open. We present a class of worst-case examples for symmetric strategy improvement on which this symmetric version also takes exponentially many steps. Remarkably, our examples exhibit this behaviour for any choice of improvement rule, which is in contrast to classical strategy improvement where hard instances are usually hand-crafted for a specific improvement rule. We present a generalized version of symmetric strategy iteration depending less rigidly on the interplay of the strategies of both players. However, it turns out it has the same shortcomings.

Cite as

Tom van Dijk, Georg Loho, and Matthew T. Maat. The Worst-Case Complexity of Symmetric Strategy Improvement. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vandijk_et_al:LIPIcs.CSL.2024.24,
  author =	{van Dijk, Tom and Loho, Georg and Maat, Matthew T.},
  title =	{{The Worst-Case Complexity of Symmetric Strategy Improvement}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.24},
  URN =		{urn:nbn:de:0030-drops-196672},
  doi =		{10.4230/LIPIcs.CSL.2024.24},
  annote =	{Keywords: Parity game, Mean payoff game, Symmetric strategy improvement, Strategy improvement, Worst-case complexity}
}
Document
Confluence of Conditional Rewriting Modulo

Authors: Salvador Lucas

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We investigate confluence of rewriting with Equational Generalized Term Rewriting Systems R, consisting of Horn clauses, some of them defining conditional equations s = t ⇐ c and rewriting rules 𝓁 → r ⇐ c. In both cases, c is a sequence of atoms, possibly defined by using additional Horn clauses. Such systems include Equational Term Rewriting Systems and (join, oriented, and semi-equational) Conditional Term Rewriting Systems. A set of equations E defines an equivalence =_E and quotient set T(F,X)/=_E of terms, where reductions s →_{R/E}t using rules in R occur. For such systems, we obtain a finite set of conditional pairs π, which can be viewed as logical sentences, to prove and disprove confluence of →_{R/E} by (dis)proving joinability of such conditional pairs π.

Cite as

Salvador Lucas. Confluence of Conditional Rewriting Modulo. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 37:1-37:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lucas:LIPIcs.CSL.2024.37,
  author =	{Lucas, Salvador},
  title =	{{Confluence of Conditional Rewriting Modulo}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{37:1--37:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.37},
  URN =		{urn:nbn:de:0030-drops-196809},
  doi =		{10.4230/LIPIcs.CSL.2024.37},
  annote =	{Keywords: Conditional rewriting, Confluence, Program analysis}
}
  • Refine by Author
  • 11 Inenaga, Shunsuke
  • 11 Lokshtanov, Daniel
  • 11 Saurabh, Saket
  • 9 Bannai, Hideo
  • 9 Charalampopoulos, Panagiotis
  • Show More...

  • Refine by Classification
  • 46 Theory of computation → Design and analysis of algorithms
  • 43 Theory of computation → Graph algorithms analysis
  • 37 Theory of computation → Parameterized complexity and exact algorithms
  • 36 Mathematics of computing → Graph algorithms
  • 32 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 19 parameterized complexity
  • 12 approximation algorithms
  • 12 treewidth
  • 11 complexity
  • 11 fine-grained complexity
  • Show More...

  • Refine by Type
  • 718 document

  • Refine by Publication Year
  • 106 2018
  • 101 2019
  • 89 2022
  • 81 2020
  • 73 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail