5 Search Results for "Ulbrich, Peter"


Document
Artifact
A New Perspective on Criticality: Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-Time Control Systems (Artifact)

Authors: Tim Rheinfels, Maximilian Gaukler, and Peter Ulbrich

Published in: DARTS, Volume 9, Issue 1, Special Issue of the 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
The increasing complexity of real-time control systems, comprising control tasks interacting with physics and non-control tasks, comes with substantial challenges: meeting various non-functional requirements implies conflicting design goals and a pronounced gap between worst and average-case resource requirements up to the overall timeliness being unverifiable. Mixed-criticality systems (MCS) are a well-known mitigation concept that operate the system in different criticality levels with timing guarantees given only to the subset of critical tasks. In many real-world applications, the criticality of control applications is tied to the system’s physical state and control deviation, with safety specifications becoming a crucial design objective. Monitoring the physical state and adapting scheduling is inaccessible to MCS but has been dedicated mainly to control engineering approaches such as self-triggered (model-predictive) control. These, however, are hard to schedule or expensive at run time. This paper explores the potential of linking both worlds and elevating the physical state to a criticality criterion. We, therefore, propose a dedicated state estimation that can be leveraged as a run-time monitor for criticality mode changes. For this purpose, we develop a highly efficient one-dimensional state abstraction to be computed within the operating system’s scheduling. Furthermore, we show how to limit abstraction pessimism by feeding back state measurements robustly. The paper focuses on the control fundamentals and outlines how to leverage this new tool in adaptive scheduling. Our experimental results substantiate the efficiency and applicability of our approach.

Cite as

Tim Rheinfels, Maximilian Gaukler, and Peter Ulbrich. A New Perspective on Criticality: Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-Time Control Systems (Artifact). In Special Issue of the 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Dagstuhl Artifacts Series (DARTS), Volume 9, Issue 1, pp. 1:1-1:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{rheinfels_et_al:DARTS.9.1.1,
  author =	{Rheinfels, Tim and Gaukler, Maximilian and Ulbrich, Peter},
  title =	{{A New Perspective on Criticality: Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-Time Control Systems (Artifact)}},
  pages =	{1:1--1:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2023},
  volume =	{9},
  number =	{1},
  editor =	{Rheinfels, Tim and Gaukler, Maximilian and Ulbrich, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DARTS.9.1.1},
  URN =		{urn:nbn:de:0030-drops-180229},
  doi =		{10.4230/DARTS.9.1.1},
  annote =	{Keywords: Real-time Control, Mixed-Criticality, Switched Systems, State Monitoring}
}
Document
A New Perspective on Criticality: Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-Time Control Systems

Authors: Tim Rheinfels, Maximilian Gaukler, and Peter Ulbrich

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
The increasing complexity of real-time systems, comprising control tasks interacting with physics and non-control tasks, comes with substantial challenges: meeting various non-functional requirements implies conflicting design goals and a pronounced gap between worst and average-case resource requirements up to the overall timeliness being unverifiable. Mixed-criticality systems (MCS) is a well-known mitigation concept that operates the system in different criticality levels with timing guarantees given only to the subset of critical tasks. However, in many real-world applications, the criticality of control tasks is tied to the system’s physical state and control deviation, with safety specifications becoming a crucial design objective. Monitoring the physical state and adapting scheduling is inaccessible to MCS but has been dedicated mainly to control engineering approaches such as self-triggered (model-predictive) control. These, however, are hard to integrate with scheduling or expensive at run-time. This paper explores the potential of linking both worlds and elevating the physical state to a criticality criterion. We, therefore, propose a dedicated state estimation that can be leveraged as a run-time monitor for criticality mode changes. For this purpose, we develop a highly efficient one-dimensional state abstraction to be computed within the operating system’s scheduling. Furthermore, we show how to limit abstraction pessimism by feeding back state measurements robustly. The paper focuses on the control fundamentals and outlines how to leverage this new tool in adaptive scheduling. Our experimental results substantiate the efficiency and applicability of our approach.

Cite as

Tim Rheinfels, Maximilian Gaukler, and Peter Ulbrich. A New Perspective on Criticality: Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-Time Control Systems. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 11:1-11:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{rheinfels_et_al:LIPIcs.ECRTS.2023.11,
  author =	{Rheinfels, Tim and Gaukler, Maximilian and Ulbrich, Peter},
  title =	{{A New Perspective on Criticality: Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-Time Control Systems}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{11:1--11:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.11},
  URN =		{urn:nbn:de:0030-drops-180405},
  doi =		{10.4230/LIPIcs.ECRTS.2023.11},
  annote =	{Keywords: Real-time Control, Mixed-Criticality, Switched Systems, State Monitoring}
}
Document
TASKers: A Whole-System Generator for Benchmarking Real-Time-System Analyses

Authors: Christian Eichler, Tobias Distler, Peter Ulbrich, Peter Wägemann, and Wolfgang Schröder-Preikschat

Published in: OASIcs, Volume 63, 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)


Abstract
Implementation-based benchmarking of timing and schedulability analyses requires system code that can be executed on real hardware and has defined properties, for example, known worst-case execution times (WCETs) of tasks. Traditional approaches for creating benchmarks with such characteristics often result in implementations that do not resemble real-world systems, either due to work only being simulated by means of busy waiting, or because tasks have no control-flow dependencies between each other. In this paper, we address this problem with TASKers, a generator that constructs realistic benchmark systems with predefined properties. To achieve this, TASKers composes patterns of real-world programs to generate tasks that produce known outputs and exhibit preconfigured WCETs when being executed with certain inputs. Using this knowledge during the generation process, TASKers is able to specifically introduce inter-task control-flow dependencies by mapping the output of one task to the input of another.

Cite as

Christian Eichler, Tobias Distler, Peter Ulbrich, Peter Wägemann, and Wolfgang Schröder-Preikschat. TASKers: A Whole-System Generator for Benchmarking Real-Time-System Analyses. In 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018). Open Access Series in Informatics (OASIcs), Volume 63, pp. 6:1-6:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{eichler_et_al:OASIcs.WCET.2018.6,
  author =	{Eichler, Christian and Distler, Tobias and Ulbrich, Peter and W\"{a}gemann, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{TASKers: A Whole-System Generator for Benchmarking Real-Time-System Analyses}},
  booktitle =	{18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)},
  pages =	{6:1--6:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-073-6},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{63},
  editor =	{Brandner, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2018.6},
  URN =		{urn:nbn:de:0030-drops-97528},
  doi =		{10.4230/OASIcs.WCET.2018.6},
  annote =	{Keywords: benchmarking real-time-system analyses, task-set generation, whole-system generation, static timing analysis, WCET analysis}
}
Document
Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems

Authors: Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat

Published in: LIPIcs, Volume 106, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
Although internal devices (e.g., memory, timers) and external devices (e.g., transceivers, sensors) significantly contribute to the energy consumption of an embedded real-time system, their impact on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken into account. Most WCRE analysis techniques, for example, only focus on the processor and therefore do not consider the energy consumption of other hardware units. Apart from that, the typical approach for dealing with devices is to assume that all of them are always activated, which leads to high WCRE overestimations in the general case where a system switches off the devices that are currently not needed in order to minimize energy consumption. In this paper, we present SysWCEC, an approach that addresses these problems by enabling static WCRE analysis for entire real-time systems, including internal as well as external devices. For this purpose, SysWCEC introduces a novel abstraction, the power-state-transition graph, which contains information about the worst-case energy consumption of all possible execution paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks during which the set of active devices in the system does not change and is consequently able to precisely handle devices being dynamically activated or deactivated.

Cite as

Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat. Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 106, pp. 24:1-24:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{wagemann_et_al:LIPIcs.ECRTS.2018.24,
  author =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems}},
  booktitle =	{30th Euromicro Conference on Real-Time Systems (ECRTS 2018)},
  pages =	{24:1--24:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-075-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{106},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2018.24},
  URN =		{urn:nbn:de:0030-drops-89795},
  doi =		{10.4230/LIPIcs.ECRTS.2018.24},
  annote =	{Keywords: energy-constrained real-time systems, worst-case energy consumption (WCEC), worst-case response energy consumption (WCRE), static whole-system analysis}
}
Document
Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact)

Authors: Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat

Published in: DARTS, Volume 4, Issue 2, Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
Although internal devices (e.g., memory, timers) and external devices (e.g., sensors, transceivers) significantly contribute to the energy consumption of an embedded real-time system, their impact on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken into account. Most WCRE analysis techniques only focus on the processor and neglect the energy consumption of other hardware units that are temporarily activated and deactivated in the system. To solve the problem of system-wide energy-consumption analysis, we present SysWCEC, an approach that addresses these problems by enabling static WCRE analysis for entire real-time systems, including internal as well as external devices. For this purpose, SysWCEC introduces a novel abstraction, the power-state--transition graph, which contains information about the worst-case energy consumption of all possible execution paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks during which the set of active devices in the system does not change and is consequently able to precisely handle devices being dynamically activated or deactivated. In this artifact evaluation, which accompanies our related conference paper, we present easy to reproduce WCRE analyses with the SysWCEC framework using several benchmarks. The artifact comprises the generation of the power-state--transition graph from a given benchmark system and the formulation of an integer linear program whose solution eventually yields safe WCRE bounds.

Cite as

Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat. Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact). In Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Dagstuhl Artifacts Series (DARTS), Volume 4, Issue 2, pp. 7:1-7:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{wagemann_et_al:DARTS.4.2.7,
  author =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact)}},
  pages =	{7:1--7:4},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2018},
  volume =	{4},
  number =	{2},
  editor =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.4.2.7},
  URN =		{urn:nbn:de:0030-drops-89756},
  doi =		{10.4230/DARTS.4.2.7},
  annote =	{Keywords: energy-constrained real-time systems, worst-case energy consumption (WCEC), worst-case response energy consumption (WCRE), static whole-system analysi}
}
  • Refine by Author
  • 5 Ulbrich, Peter
  • 3 Distler, Tobias
  • 3 Schröder-Preikschat, Wolfgang
  • 3 Wägemann, Peter
  • 2 Dietrich, Christian
  • Show More...

  • Refine by Classification
  • 4 Computer systems organization → Real-time systems
  • 2 Computer systems organization → Dependable and fault-tolerant systems and networks
  • 2 Computer systems organization → Embedded and cyber-physical systems

  • Refine by Keyword
  • 2 Mixed-Criticality
  • 2 Real-time Control
  • 2 State Monitoring
  • 2 Switched Systems
  • 2 energy-constrained real-time systems
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 3 2018
  • 2 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail