5 Search Results for "Vidal, Concepci�n"


Document
Vision
Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination

Authors: Luis-Daniel Ibáñez, John Domingue, Sabrina Kirrane, Oshani Seneviratne, Aisling Third, and Maria-Esther Vidal

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning How the output of AI systems can be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives.

Cite as

Luis-Daniel Ibáñez, John Domingue, Sabrina Kirrane, Oshani Seneviratne, Aisling Third, and Maria-Esther Vidal. Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 9:1-9:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{ibanez_et_al:TGDK.1.1.9,
  author =	{Ib\'{a}\~{n}ez, Luis-Daniel and Domingue, John and Kirrane, Sabrina and Seneviratne, Oshani and Third, Aisling and Vidal, Maria-Esther},
  title =	{{Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{9:1--9:32},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/TGDK.1.1.9},
  URN =		{urn:nbn:de:0030-drops-194839},
  doi =		{10.4230/TGDK.1.1.9},
  annote =	{Keywords: Trust, Accountability, Autonomy, AI, Knowledge Graphs}
}
Document
Invited Talk
Temporal Modalities in Answer Set Programming (Invited Talk)

Authors: Pedro Cabalar

Published in: LIPIcs, Volume 178, 27th International Symposium on Temporal Representation and Reasoning (TIME 2020)


Abstract
Based on the answer set (or stable model) semantics for logic programs, Answer Set Programming (ASP) has become one of the most successful paradigms for practical Knowledge Representation and problem solving. Although ASP is naturally equipped for solving static combinatorial problems up to NP complexity (or ΣP2 in the disjunctive case) its application to temporal scenarios has been frequent since its very beginning, partly due to its early use for reasoning about actions and change. Temporal problems normally suppose an extra challenge for ASP for several reasons. On the one hand, they normally raise the complexity (in the case of classical planning, for instance, it becomes PSPACE-complete), although this is usually accounted for by making repeated calls to an ASP solver. On the other hand, temporal scenarios also pose a representational challenge, since the basic ASP language does not support temporal expressions. To fill this representational gap, a temporal extension of ASP called Temporal Equilibrium Logic (TEL) was proposed in and extensively studied later. This formalism constitutes a modal, linear-time extension of Equilibrium Logic which, in its turn, is a complete logical characterisation of (standard) ASP based on the intermediate logic of Here-and-There (HT). As a result, TEL is an expressive non-monotonic modal logic that shares the syntax of Linear-Time Temporal Logic (LTL) but interprets temporal formulas under a non-monotonic semantics that properly extends stable models.

Cite as

Pedro Cabalar. Temporal Modalities in Answer Set Programming (Invited Talk). In 27th International Symposium on Temporal Representation and Reasoning (TIME 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 178, pp. 2:1-2:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cabalar:LIPIcs.TIME.2020.2,
  author =	{Cabalar, Pedro},
  title =	{{Temporal Modalities in Answer Set Programming}},
  booktitle =	{27th International Symposium on Temporal Representation and Reasoning (TIME 2020)},
  pages =	{2:1--2:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-167-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{178},
  editor =	{Mu\~{n}oz-Velasco, Emilio and Ozaki, Ana and Theobald, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2020.2},
  URN =		{urn:nbn:de:0030-drops-129707},
  doi =		{10.4230/LIPIcs.TIME.2020.2},
  annote =	{Keywords: Logic Programming, Temporal Logic, Answer Set Programming, Modal Logic}
}
Document
Reversible Term Rewriting

Authors: Naoki Nishida, Adrián Palacios, and Germán Vidal

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
Essentially, in a reversible programming language, for each forward computation step from state S to state S', there exists a constructive and deterministic method to go backwards from state S' to state S. Besides its theoretical interest, reversible computation is a fundamental concept which is relevant in many different areas like cellular automata, bidirectional program transformation, or quantum computing, to name a few. In this paper, we focus on term rewriting, a computation model that underlies most rule-based programming languages. In general, term rewriting is not reversible, even for injective functions; namely, given a rewrite step t1 -> t2, we do not always have a decidable and deterministic method to get t1 from t2. Here, we introduce a conservative extension of term rewriting that becomes reversible. Furthermore, we also define a transformation to make a rewrite system reversible using standard term rewriting.

Cite as

Naoki Nishida, Adrián Palacios, and Germán Vidal. Reversible Term Rewriting. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{nishida_et_al:LIPIcs.FSCD.2016.28,
  author =	{Nishida, Naoki and Palacios, Adri\'{a}n and Vidal, Germ\'{a}n},
  title =	{{Reversible Term Rewriting}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{28:1--28:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.28},
  URN =		{urn:nbn:de:0030-drops-59841},
  doi =		{10.4230/LIPIcs.FSCD.2016.28},
  annote =	{Keywords: term rewriting, reversible computation, program transformation}
}
Document
Towards Modelling Actor-Based Concurrency in Term Rewriting

Authors: Adrián Palacios and Germán Vidal

Published in: OASIcs, Volume 46, 2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE 2015)


Abstract
In this work, we introduce a scheme for modelling actor systems within sequential term rewriting. In our proposal, a TRS consists of the union of three components: the functional part (which is specific of a system), a set of rules for reducing concurrent actions, and a set of rules for defining a particular scheduling policy. A key ingredient of our approach is that concurrent systems are modelled by terms in which concurrent actions can never occur inside user-defined function calls. This assumption greatly simplifies the definition of the semantics for concurrent actions, since no term traversal will be needed. We prove that these systems are well defined in the sense that concurrent actions can always be reduced. Our approach can be used as a basis for modelling actor-based concurrent programs, which can then be analyzed using existing techniques for term rewrite systems.

Cite as

Adrián Palacios and Germán Vidal. Towards Modelling Actor-Based Concurrency in Term Rewriting. In 2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE 2015). Open Access Series in Informatics (OASIcs), Volume 46, pp. 19-29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{palacios_et_al:OASIcs.WPTE.2015.19,
  author =	{Palacios, Adri\'{a}n and Vidal, Germ\'{a}n},
  title =	{{Towards Modelling Actor-Based Concurrency in Term Rewriting}},
  booktitle =	{2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE 2015)},
  pages =	{19--29},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-94-1},
  ISSN =	{2190-6807},
  year =	{2015},
  volume =	{46},
  editor =	{Chiba, Yuki and Escobar, Santiago and Nishida, Naoki and Sabel, David and Schmidt-Schau{\ss}, Manfred},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WPTE.2015.19},
  URN =		{urn:nbn:de:0030-drops-51792},
  doi =		{10.4230/OASIcs.WPTE.2015.19},
  annote =	{Keywords: concurrency, actor model, rewriting}
}
Document
Paving the Way for Temporal Grounding

Authors: Felicidad Aguado, Pedro Cabalar, Martín Diéguez, Gilberto Pérez, and Concepción Vidal

Published in: LIPIcs, Volume 17, Technical Communications of the 28th International Conference on Logic Programming (ICLP'12) (2012)


Abstract
In this paper we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming (ASP) for dealing with linear-time modal operators. We provide several fundamental contributions that pave the way for the implementation of a grounding process, that is, a method that allows replacing variables by ground instances in all the possible (or better, relevant) ways.

Cite as

Felicidad Aguado, Pedro Cabalar, Martín Diéguez, Gilberto Pérez, and Concepción Vidal. Paving the Way for Temporal Grounding. In Technical Communications of the 28th International Conference on Logic Programming (ICLP'12). Leibniz International Proceedings in Informatics (LIPIcs), Volume 17, pp. 290-300, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{aguado_et_al:LIPIcs.ICLP.2012.290,
  author =	{Aguado, Felicidad and Cabalar, Pedro and Di\'{e}guez, Mart{\'\i}n and P\'{e}rez, Gilberto and Vidal, Concepci\'{o}n},
  title =	{{Paving the Way for Temporal Grounding}},
  booktitle =	{Technical Communications of the 28th International Conference on Logic Programming (ICLP'12)},
  pages =	{290--300},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-43-9},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{17},
  editor =	{Dovier, Agostino and Santos Costa, V{\'\i}tor},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICLP.2012.290},
  URN =		{urn:nbn:de:0030-drops-36301},
  doi =		{10.4230/LIPIcs.ICLP.2012.290},
  annote =	{Keywords: ASP, linear temporal logic, grounding, temporal equilibrium logic}
}
  • Refine by Author
  • 2 Cabalar, Pedro
  • 2 Palacios, Adrián
  • 2 Vidal, Germán
  • 1 Aguado, Felicidad
  • 1 Diéguez, Martín
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Distributed artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Logic programming and answer set programming
  • 1 Computing methodologies → Nonmonotonic, default reasoning and belief revision
  • 1 Computing methodologies → Temporal reasoning
  • Show More...

  • Refine by Keyword
  • 1 AI
  • 1 ASP
  • 1 Accountability
  • 1 Answer Set Programming
  • 1 Autonomy
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 1 2012
  • 1 2015
  • 1 2016
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail