95 Search Results for "Vondr�k, Jan"


Document
Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

Authors: Iddo Tzameret and Lu-Ming Zhang

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We develop the theory of cryptographic nondeterministic-secure pseudorandomness beyond the point reached by Rudich’s original work [S. Rudich, 1997], and apply it to draw new consequences in average-case complexity and proof complexity. Specifically, we show the following: Demi-bit stretch: Super-bits and demi-bits are variants of cryptographic pseudorandom generators which are secure against nondeterministic statistical tests [S. Rudich, 1997]. They were introduced to rule out certain approaches to proving strong complexity lower bounds beyond the limitations set out by the Natural Proofs barrier of Razborov and Rudich [A. A. Razborov and S. Rudich, 1997]. Whether demi-bits are stretchable at all had been an open problem since their introduction. We answer this question affirmatively by showing that: every demi-bit b:{0,1}ⁿ → {0,1}^{n+1} can be stretched into sublinear many demi-bits b':{0,1}ⁿ → {0,1}^{n+n^{c}}, for every constant 0 < c < 1. Average-case hardness: Using work by Santhanam [Rahul Santhanam, 2020], we apply our results to obtain new average-case Kolmogorov complexity results: we show that K^{poly}[n-O(1)] is zero-error average-case hard against NP/poly machines iff K^{poly}[n-o(n)] is, where for a function s(n):ℕ → ℕ, K^{poly}[s(n)] denotes the languages of all strings x ∈ {0,1}ⁿ for which there are (fixed) polytime Turing machines of description-length at most s(n) that output x. Characterising super-bits by nondeterministic unpredictability: In the deterministic setting, Yao [Yao, 1982] proved that super-polynomial hardness of pseudorandom generators is equivalent to ("next-bit") unpredictability. Unpredictability roughly means that given any strict prefix of a random string, it is infeasible to predict the next bit. We initiate the study of unpredictability beyond the deterministic setting (in the cryptographic regime), and characterise the nondeterministic hardness of generators from an unpredictability perspective. Specifically, we propose four stronger notions of unpredictability: NP/poly-unpredictability, coNP/poly-unpredictability, ∩-unpredictability and ∪-unpredictability, and show that super-polynomial nondeterministic hardness of generators lies between ∩-unpredictability and ∪-unpredictability. Characterising super-bits by nondeterministic hard-core predicates: We introduce a nondeterministic variant of hard-core predicates, called super-core predicates. We show that the existence of a super-bit is equivalent to the existence of a super-core of some non-shrinking function. This serves as an analogue of the equivalence between the existence of a strong pseudorandom generator and the existence of a hard-core of some one-way function [Goldreich and Levin, 1989; Håstad et al., 1999], and provides a first alternative characterisation of super-bits. We also prove that a certain class of functions, which may have hard-cores, cannot possess any super-core.

Cite as

Iddo Tzameret and Lu-Ming Zhang. Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 95:1-95:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{tzameret_et_al:LIPIcs.ITCS.2024.95,
  author =	{Tzameret, Iddo and Zhang, Lu-Ming},
  title =	{{Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{95:1--95:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.95},
  URN =		{urn:nbn:de:0030-drops-196234},
  doi =		{10.4230/LIPIcs.ITCS.2024.95},
  annote =	{Keywords: Pseudorandomness, Cryptography, Natural Proofs, Nondeterminism, Lower bounds}
}
Document
Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

Authors: Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich, Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Dynamic programming on various graph decompositions is one of the most fundamental techniques used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or tree decompositions, such dynamic programming uses space that is exponential in the decomposition’s width, and there are good reasons to believe that this is necessary. However, it has been shown that in graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity without requiring worse time complexity than their counterparts working on tree decompositions of bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account both the depth and the width of a tree decomposition of the graph, rather than the width alone. Motivated by the above, we consider graphs that admit clique expressions with bounded depth and label count, or equivalently, graphs of low shrubdepth. Here, shrubdepth is a bounded-depth analogue of cliquewidth, in the same way as treedepth is a bounded-depth analogue of treewidth. We show that also in this setting, bounding the depth of the decomposition is a deciding factor for improving the space complexity. More precisely, we prove that on n-vertex graphs equipped with a tree-model (a decomposition notion underlying shrubdepth) of depth d and using k labels, - Independent Set can be solved in time 2^𝒪(dk) ⋅ n^𝒪(1) using 𝒪(dk²log n) space; - Max Cut can be solved in time n^𝒪(dk) using 𝒪(dk log n) space; and - Dominating Set can be solved in time 2^𝒪(dk) ⋅ n^𝒪(1) using n^𝒪(1) space via a randomized algorithm. We also establish a lower bound, conditional on a certain assumption about the complexity of Longest Common Subsequence, which shows that at least in the case of Independent Set the exponent of the parametric factor in the time complexity has to grow with d if one wishes to keep the space complexity polynomial.

Cite as

Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich, Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen. Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.ESA.2023.18,
  author =	{Bergougnoux, Benjamin and Chekan, Vera and Ganian, Robert and Kant\'{e}, Mamadou Moustapha and Mnich, Matthias and Oum, Sang-il and Pilipczuk, Micha{\l} and van Leeuwen, Erik Jan},
  title =	{{Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.18},
  URN =		{urn:nbn:de:0030-drops-186710},
  doi =		{10.4230/LIPIcs.ESA.2023.18},
  annote =	{Keywords: Parameterized complexity, shrubdepth, space complexity, algebraic methods}
}
Document
Recognizing H-Graphs - Beyond Circular-Arc Graphs

Authors: Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K₂-graphs coincide with interval graphs, K₃-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K₃-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and 𝖯 cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Cite as

Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman. Recognizing H-Graphs - Beyond Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agaoglucagirici_et_al:LIPIcs.MFCS.2023.8,
  author =	{A\u{g}ao\u{g}lu \c{C}a\u{g}{\i}r{\i}c{\i}, Deniz and \c{C}a\u{g}{\i}r{\i}c{\i}, Onur and Derbisz, Jan and Hartmann, Tim A. and Hlin\v{e}n\'{y}, Petr and Kratochv{\'\i}l, Jan and Krawczyk, Tomasz and Zeman, Peter},
  title =	{{Recognizing H-Graphs - Beyond Circular-Arc Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-185420},
  doi =		{10.4230/LIPIcs.MFCS.2023.8},
  annote =	{Keywords: H-graphs, Intersection Graphs, Helly Property}
}
Document
MizAR 60 for Mizar 50

Authors: Jan Jakubův, Karel Chvalovský, Zarathustra Goertzel, Cezary Kaliszyk, Mirek Olšák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
As a present to Mizar on its 50th anniversary, we develop an AI/TP system that automatically proves about 60% of the Mizar theorems in the hammer setting. We also automatically prove 75% of the Mizar theorems when the automated provers are helped by using only the premises used in the human-written Mizar proofs. We describe the methods and large-scale experiments leading to these results. This includes in particular the E and Vampire provers, their ENIGMA and Deepire learning modifications, a number of learning-based premise selection methods, and the incremental loop that interleaves growing a corpus of millions of ATP proofs with training increasingly strong AI/TP systems on them. We also present a selection of Mizar problems that were proved automatically.

Cite as

Jan Jakubův, Karel Chvalovský, Zarathustra Goertzel, Cezary Kaliszyk, Mirek Olšák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban. MizAR 60 for Mizar 50. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 19:1-19:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jakubuv_et_al:LIPIcs.ITP.2023.19,
  author =	{Jakub\r{u}v, Jan and Chvalovsk\'{y}, Karel and Goertzel, Zarathustra and Kaliszyk, Cezary and Ol\v{s}\'{a}k, Mirek and Piotrowski, Bartosz and Schulz, Stephan and Suda, Martin and Urban, Josef},
  title =	{{MizAR 60 for Mizar 50}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.19},
  URN =		{urn:nbn:de:0030-drops-183942},
  doi =		{10.4230/LIPIcs.ITP.2023.19},
  annote =	{Keywords: Mizar, ENIGMA, Automated Reasoning, Machine Learning}
}
Document
Track A: Algorithms, Complexity and Games
Connected k-Center and k-Diameter Clustering

Authors: Lukas Drexler, Jan Eube, Kelin Luo, Heiko Röglin, Melanie Schmidt, and Julian Wargalla

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Motivated by an application from geodesy, we study the connected k-center problem and the connected k-diameter problem. These problems arise from the classical k-center and k-diameter problems by adding a side constraint. For the side constraint, we are given an undirected connectivity graph G on the input points, and a clustering is now only feasible if every cluster induces a connected subgraph in G. Usually in clustering problems one assumes that the clusters are pairwise disjoint. We study this case but additionally also the case that clusters are allowed to be non-disjoint. This can help to satisfy the connectivity constraints. Our main result is an O(1)-approximation algorithm for the disjoint connected k-center and k-diameter problem for Euclidean spaces of low dimension (constant d) and for metrics with constant doubling dimension. For general metrics, we get an O(log²k)-approximation. Our algorithms work by computing a non-disjoint connected clustering first and transforming it into a disjoint connected clustering. We complement these upper bounds by several upper and lower bounds for variations and special cases of the model.

Cite as

Lukas Drexler, Jan Eube, Kelin Luo, Heiko Röglin, Melanie Schmidt, and Julian Wargalla. Connected k-Center and k-Diameter Clustering. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{drexler_et_al:LIPIcs.ICALP.2023.50,
  author =	{Drexler, Lukas and Eube, Jan and Luo, Kelin and R\"{o}glin, Heiko and Schmidt, Melanie and Wargalla, Julian},
  title =	{{Connected k-Center and k-Diameter Clustering}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.50},
  URN =		{urn:nbn:de:0030-drops-181024},
  doi =		{10.4230/LIPIcs.ICALP.2023.50},
  annote =	{Keywords: Approximation algorithms, Clustering, Connectivity constraints}
}
Document
Track A: Algorithms, Complexity and Games
Faster Submodular Maximization for Several Classes of Matroids

Authors: Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Though tight approximation algorithms for general matroid constraints exist in theory, the running times of such algorithms typically scale quadratically, and are not practical for truly large scale settings. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [Alina Ene and Huy L. Nguyen, 2019]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of 1-1/e-ε and both generalize and accelerate the results of Ene and Nguyen [Alina Ene and Huy L. Nguyen, 2019]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondrák [Ashwinkumar Badanidiyuru and Jan Vondrák, 2014]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel Freeze operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [Stephen Alstrup et al., 2005] that maintains the maximum weight basis under insertions and deletions of elements in O(log n) time. This data structure needs to support certain subtree query and path update operations that are performed every insertion and deletion that are non-trivial to handle in conjunction. For the transversal matroid the Freeze operation corresponds to requiring the data structure to keep a certain set S of vertices matched, a property that we call S-stability. While there is a large body of work on dynamic matching algorithms, none are S-stable and maintain an approximate maximum weight matching under vertex updates. We give the first such algorithm for bipartite graphs with total running time linear (up to log factors) in the number of edges.

Cite as

Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng. Faster Submodular Maximization for Several Classes of Matroids. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 74:1-74:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ICALP.2023.74,
  author =	{Henzinger, Monika and Liu, Paul and Vondr\'{a}k, Jan and Zheng, Da Wei},
  title =	{{Faster Submodular Maximization for Several Classes of Matroids}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{74:1--74:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.74},
  URN =		{urn:nbn:de:0030-drops-181267},
  doi =		{10.4230/LIPIcs.ICALP.2023.74},
  annote =	{Keywords: submodular optimization, dynamic data structures, matching algorithms}
}
Document
Drawings of Complete Multipartite Graphs up to Triangle Flips

Authors: Oswin Aichholzer, Man-Kwun Chiu, Hung P. Hoang, Michael Hoffmann, Jan Kynčl, Yannic Maus, Birgit Vogtenhuber, and Alexandra Weinberger

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its incident edges, represented by the labels of their other endpoints. The extended rotation system (ERS) of the drawing is the collection of the rotations of all vertices and crossings. A drawing is simple if each pair of edges has at most one common point. Gioan’s Theorem states that for any two simple drawings of the complete graph K_n with the same crossing edge pairs, one drawing can be transformed into the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3). This operation refers to the act of moving one edge of a triangular cell formed by three pairwise crossing edges over the opposite crossing of the cell, via a local transformation. We investigate to what extent Gioan-type theorems can be obtained for wider classes of graphs. A necessary (but in general not sufficient) condition for two drawings of a graph to be transformable into each other by a sequence of triangle flips is that they have the same ERS. As our main result, we show that for the large class of complete multipartite graphs, this necessary condition is in fact also sufficient. We present two different proofs of this result, one of which is shorter, while the other one yields a polynomial time algorithm for which the number of needed triangle flips for graphs on n vertices is bounded by O(n^{16}). The latter proof uses a Carathéodory-type theorem for simple drawings of complete multipartite graphs, which we believe to be of independent interest. Moreover, we show that our Gioan-type theorem for complete multipartite graphs is essentially tight in the following sense: For the complete bipartite graph K_{m,n} minus two edges and K_{m,n} plus one edge for any m,n ≥ 4, as well as K_n minus a 4-cycle for any n ≥ 5, there exist two simple drawings with the same ERS that cannot be transformed into each other using triangle flips. So having the same ERS does not remain sufficient when removing or adding very few edges.

Cite as

Oswin Aichholzer, Man-Kwun Chiu, Hung P. Hoang, Michael Hoffmann, Jan Kynčl, Yannic Maus, Birgit Vogtenhuber, and Alexandra Weinberger. Drawings of Complete Multipartite Graphs up to Triangle Flips. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.SoCG.2023.6,
  author =	{Aichholzer, Oswin and Chiu, Man-Kwun and Hoang, Hung P. and Hoffmann, Michael and Kyn\v{c}l, Jan and Maus, Yannic and Vogtenhuber, Birgit and Weinberger, Alexandra},
  title =	{{Drawings of Complete Multipartite Graphs up to Triangle Flips}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.6},
  URN =		{urn:nbn:de:0030-drops-178563},
  doi =		{10.4230/LIPIcs.SoCG.2023.6},
  annote =	{Keywords: Simple drawings, simple topological graphs, complete graphs, multipartite graphs, k-partite graphs, bipartite graphs, Gioan’s Theorem, triangle flips, Reidemeister moves}
}
Document
Combinatorial and Algorithmic Aspects of Monadic Stability

Authors: Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Nowhere dense classes of graphs are classes of sparse graphs with rich structural and algorithmic properties, however, they fail to capture even simple classes of dense graphs. Monadically stable classes, originating from model theory, generalize nowhere dense classes and close them under transductions, i.e. transformations defined by colorings and simple first-order interpretations. In this work we aim to extend some combinatorial and algorithmic properties of nowhere dense classes to monadically stable classes of finite graphs. We prove the following results. - For every monadically stable class C and fixed integer s ≥ 3, the Ramsey numbers R_C(s,t) are bounded from above by 𝒪(t^{s-1-δ}) for some δ > 0, improving the bound R(s,t) ∈ 𝒪(t^{s-1}/(log t)^{s-1}) known for the class of all graphs and the bounds known for k-stable graphs when s ≤ k. - For every monadically stable class C and every integer r, there exists δ > 0 such that every graph G ∈ C that contains an r-subdivision of the biclique K_{t,t} as a subgraph also contains K_{t^δ,t^δ} as a subgraph. This generalizes earlier results for nowhere dense graph classes. - We obtain a stronger regularity lemma for monadically stable classes of graphs. - Finally, we show that we can compute polynomial kernels for the independent set and dominating set problems in powers of nowhere dense classes. Formerly, only fixed-parameter tractable algorithms were known for these problems on powers of nowhere dense classes.

Cite as

Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny. Combinatorial and Algorithmic Aspects of Monadic Stability. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.ISAAC.2022.11,
  author =	{Dreier, Jan and M\"{a}hlmann, Nikolas and Mouawad, Amer E. and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Combinatorial and Algorithmic Aspects of Monadic Stability}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.11},
  URN =		{urn:nbn:de:0030-drops-172961},
  doi =		{10.4230/LIPIcs.ISAAC.2022.11},
  annote =	{Keywords: Monadic Stability, Structural Graph Theory, Ramsey Numbers, Regularity, Kernels}
}
Document
Parameterized Complexity of Streaming Diameter and Connectivity Problems

Authors: Jelle J. Oostveen and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is 𝒪(log n) for any fixed k. Underlying these algorithms is a method to execute a breadth-first search in 𝒪(k) passes and 𝒪(k log n) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where Ω(n/p) bits of memory is needed for any p-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H, for most H. For some cases, we can also show one-pass, Ω(n log n) bits of memory lower bounds. We also prove a much stronger Ω(n²/p) lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k. This yields a kernel of 2k vertices (with 𝒪(k²) edges) produced as a stream in poly(k) passes and only 𝒪(k log n) bits of memory.

Cite as

Jelle J. Oostveen and Erik Jan van Leeuwen. Parameterized Complexity of Streaming Diameter and Connectivity Problems. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{oostveen_et_al:LIPIcs.IPEC.2022.24,
  author =	{Oostveen, Jelle J. and van Leeuwen, Erik Jan},
  title =	{{Parameterized Complexity of Streaming Diameter and Connectivity Problems}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{24:1--24:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.24},
  URN =		{urn:nbn:de:0030-drops-173808},
  doi =		{10.4230/LIPIcs.IPEC.2022.24},
  annote =	{Keywords: Stream, Streaming, Graphs, Parameter, Complexity, Diameter, Connectivity, Vertex Cover, Disjointness, Permutation}
}
Document
Efficient Classification of Locally Checkable Problems in Regular Trees

Authors: Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka Suomela

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
We give practical, efficient algorithms that automatically determine the asymptotic distributed round complexity of a given locally checkable graph problem in the [Θ(log n), Θ(n)] region, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in O(log n) rounds. If not, it is known that the complexity has to be Θ(n^{1/k}) for some k = 1, 2, ..., and in this case the algorithms also output the right value of the exponent k. In rooted trees in the O(log n) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O(log n) region remains an open question.

Cite as

Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka Suomela. Efficient Classification of Locally Checkable Problems in Regular Trees. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2022.8,
  author =	{Balliu, Alkida and Brandt, Sebastian and Chang, Yi-Jun and Olivetti, Dennis and Studen\'{y}, Jan and Suomela, Jukka},
  title =	{{Efficient Classification of Locally Checkable Problems in Regular Trees}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.8},
  URN =		{urn:nbn:de:0030-drops-171993},
  doi =		{10.4230/LIPIcs.DISC.2022.8},
  annote =	{Keywords: locally checkable labeling, locality, distributed computational complexity}
}
Document
Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

Authors: Kush Grover, Jan Křetínský, Tobias Meggendorfer, and Maximilian Weininger

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We consider the problem of approximating the reachability probabilities in Markov decision processes (MDP) with uncountable (continuous) state and action spaces. While there are algorithms that, for special classes of such MDP, provide a sequence of approximations converging to the true value in the limit, our aim is to obtain an algorithm with guarantees on the precision of the approximation. As this problem is undecidable in general, assumptions on the MDP are necessary. Our main contribution is to identify sufficient assumptions that are as weak as possible, thus approaching the "boundary" of which systems can be correctly and reliably analyzed. To this end, we also argue why each of our assumptions is necessary for algorithms based on processing finitely many observations. We present two solution variants. The first one provides converging lower bounds under weaker assumptions than typical ones from previous works concerned with guarantees. The second one then utilizes stronger assumptions to additionally provide converging upper bounds. Altogether, we obtain an anytime algorithm, i.e. yielding a sequence of approximants with known and iteratively improving precision, converging to the true value in the limit. Besides, due to the generality of our assumptions, our algorithms are very general templates, readily allowing for various heuristics from literature in contrast to, e.g., a specific discretization algorithm. Our theoretical contribution thus paves the way for future practical improvements without sacrificing correctness guarantees.

Cite as

Kush Grover, Jan Křetínský, Tobias Meggendorfer, and Maximilian Weininger. Anytime Guarantees for Reachability in Uncountable Markov Decision Processes. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{grover_et_al:LIPIcs.CONCUR.2022.11,
  author =	{Grover, Kush and K\v{r}et{\'\i}nsk\'{y}, Jan and Meggendorfer, Tobias and Weininger, Maximilian},
  title =	{{Anytime Guarantees for Reachability in Uncountable Markov Decision Processes}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.11},
  URN =		{urn:nbn:de:0030-drops-170743},
  doi =		{10.4230/LIPIcs.CONCUR.2022.11},
  annote =	{Keywords: Uncountable system, Markov decision process, discrete-time Markov control process, probabilistic verification, anytime guarantee}
}
Document
The Isabelle ENIGMA

Authors: Zarathustra A. Goertzel, Jan Jakubův, Cezary Kaliszyk, Miroslav Olšák, Jelle Piepenbrock, and Josef Urban

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
We significantly improve the performance of the E automated theorem prover on the Isabelle Sledgehammer problems by combining learning and theorem proving in several ways. In particular, we develop targeted versions of the ENIGMA guidance for the Isabelle problems, targeted versions of neural premise selection, and targeted strategies for E. The methods are trained in several iterations over hundreds of thousands untyped and typed first-order problems extracted from Isabelle. Our final best single-strategy ENIGMA and premise selection system improves the best previous version of E by 25.3% in 15 seconds, outperforming also all other previous ATP and SMT systems.

Cite as

Zarathustra A. Goertzel, Jan Jakubův, Cezary Kaliszyk, Miroslav Olšák, Jelle Piepenbrock, and Josef Urban. The Isabelle ENIGMA. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goertzel_et_al:LIPIcs.ITP.2022.16,
  author =	{Goertzel, Zarathustra A. and Jakub\r{u}v, Jan and Kaliszyk, Cezary and Ol\v{s}\'{a}k, Miroslav and Piepenbrock, Jelle and Urban, Josef},
  title =	{{The Isabelle ENIGMA}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.16},
  URN =		{urn:nbn:de:0030-drops-167253},
  doi =		{10.4230/LIPIcs.ITP.2022.16},
  annote =	{Keywords: E Prover, ENIGMA, Premise Selection, Isabelle/Sledgehammer}
}
Document
Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors

Authors: Harm Derksen, Visu Makam, and Jeroen Zuiddam

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
Since the seminal works of Strassen and Valiant it has been a central theme in algebraic complexity theory to understand the relative complexity of algebraic problems, that is, to understand which algebraic problems (be it bilinear maps like matrix multiplication in Strassen’s work, or the determinant and permanent polynomials in Valiant’s) can be reduced to each other (under the appropriate notion of reduction). In this paper we work in the setting of bilinear maps and with the usual notion of reduction that allows applying linear maps to the inputs and output of a bilinear map in order to compute another bilinear map. As our main result we determine precisely how many independent scalar multiplications can be reduced to a given bilinear map (this number is called the subrank, and extends the concept of matrix diagonalization to tensors), for essentially all (i.e. generic) bilinear maps. Namely, we prove for a generic bilinear map T : V × V → V where dim(V) = n that θ(√n) independent scalar multiplications can be reduced to T. Our result significantly improves on the previous upper bound from the work of Strassen (1991) and Bürgisser (1990) which was n^{2/3 + o(1)}. Our result is very precise and tight up to an additive constant. Our full result is much more general and applies not only to bilinear maps and 3-tensors but also to k-tensors, for which we find that the generic subrank is θ(n^{1/(k-1)}). Moreover, as an application we prove that the subrank is not additive under the direct sum. The subrank plays a central role in several areas of complexity theory (matrix multiplication algorithms, barrier results) and combinatorics (e.g., the cap set problem and sunflower problem). As a consequence of our result we obtain several large separations between the subrank and tensor methods that have received much interest recently, notably the slice rank (Tao, 2016), analytic rank (Gowers-Wolf, 2011; Lovett, 2018; Bhrushundi-Harsha-Hatami-Kopparty-Kumar, 2020), geometric rank (Kopparty-Moshkovitz-Zuiddam, 2020), and G-stable rank (Derksen, 2020). Our proofs of the lower bounds rely on a new technical result about an optimal decomposition of tensor space into structured subspaces, which we think may be of independent interest.

Cite as

Harm Derksen, Visu Makam, and Jeroen Zuiddam. Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2022.9,
  author =	{Derksen, Harm and Makam, Visu and Zuiddam, Jeroen},
  title =	{{Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.9},
  URN =		{urn:nbn:de:0030-drops-165716},
  doi =		{10.4230/LIPIcs.CCC.2022.9},
  annote =	{Keywords: tensors, bilinear maps, complexity, subrank, diagonalization, generic tensors, random tensors, reduction, slice rank}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

Authors: Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Designing efficient dynamic graph algorithms against an adaptive adversary is a major goal in the field of dynamic graph algorithms and has witnessed many exciting recent developments in, e.g., dynamic matching (Wajc STOC'20) and decremental shortest paths (Chuzhoy and Khanna STOC'19). Compared to other graph primitives (e.g. spanning trees and matchings), designing such algorithms for graph spanners and (more broadly) graph sparsifiers poses a unique challenge since there is no fast deterministic algorithm known for static computation and the lack of a way to adjust the output slowly (known as "small recourse/replacements"). This paper presents the first non-trivial efficient adaptive algorithms for maintaining many sparsifiers against an adaptive adversary. Specifically, we present algorithms that maintain 1) a polylog(n)-spanner of size Õ(n) in polylog(n) amortized update time, 2) an O(k)-approximate cut sparsifier of size Õ(n) in Õ(n^{1/k}) amortized update time, and 3) a polylog(n)-approximate spectral sparsifier in polylog(n) amortized update time. Our bounds are the first non-trivial ones even when only the recourse is concerned. Our results hold even against a stronger adversary, who can access the random bits previously used by the algorithms and the amortized update time of all algorithms can be made worst-case by paying sub-polynomial factors. Our spanner result resolves an open question by Ahmed et al. (2019) and our results and techniques imply additional improvements over existing results, including (i) answering open questions about decremental single-source shortest paths by Chuzhoy and Khanna (STOC'19) and Gutenberg and Wulff-Nilsen (SODA'20), implying a nearly-quadratic time algorithm for approximating minimum-cost unit-capacity flow and (ii) de-amortizing a result of Abraham et al. (FOCS'16) for dynamic spectral sparsifiers. Our results are based on two novel techniques. The first technique is a generic black-box reduction that allows us to assume that the graph is initially an expander with almost uniform-degree and, more importantly, stays as an almost uniform-degree expander while undergoing only edge deletions. The second technique is called proactive resampling: here we constantly re-sample parts of the input graph so that, independent of an adversary’s computational power, a desired structure of the underlying graph can be always maintained. Despite its simplicity, the analysis of this sampling scheme is far from trivial, because the adversary can potentially create dependencies between the random choices used by the algorithm. We believe these two techniques could be useful for developing other adaptive algorithms.

Cite as

Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bernstein_et_al:LIPIcs.ICALP.2022.20,
  author =	{Bernstein, Aaron and van den Brand, Jan and Probst Gutenberg, Maximilian and Nanongkai, Danupon and Saranurak, Thatchaphol and Sidford, Aaron and Sun, He},
  title =	{{Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.20},
  URN =		{urn:nbn:de:0030-drops-163611},
  doi =		{10.4230/LIPIcs.ICALP.2022.20},
  annote =	{Keywords: dynamic graph algorithm, adaptive adversary, spanner, sparsifier}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Submodular Maximization Under Matroid Constraints

Authors: Moran Feldman, Paul Liu, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Recent progress in (semi-)streaming algorithms for monotone submodular function maximization has led to tight results for a simple cardinality constraint. However, current techniques fail to give a similar understanding for natural generalizations, including matroid constraints. This paper aims at closing this gap. For a single matroid of rank k (i.e., any solution has cardinality at most k), our main results are: - A single-pass streaming algorithm that uses Õ(k) memory and achieves an approximation guarantee of 0.3178. - A multi-pass streaming algorithm that uses Õ(k) memory and achieves an approximation guarantee of (1-1/e - ε) by taking a constant (depending on ε) number of passes over the stream. This improves on the previously best approximation guarantees of 1/4 and 1/2 for single-pass and multi-pass streaming algorithms, respectively. In fact, our multi-pass streaming algorithm is tight in that any algorithm with a better guarantee than 1/2 must make several passes through the stream and any algorithm that beats our guarantee of 1-1/e must make linearly many passes (as well as an exponential number of value oracle queries). Moreover, we show how the approach we use for multi-pass streaming can be further strengthened if the elements of the stream arrive in uniformly random order, implying an improved result for p-matchoid constraints.

Cite as

Moran Feldman, Paul Liu, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. Streaming Submodular Maximization Under Matroid Constraints. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 59:1-59:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{feldman_et_al:LIPIcs.ICALP.2022.59,
  author =	{Feldman, Moran and Liu, Paul and Norouzi-Fard, Ashkan and Svensson, Ola and Zenklusen, Rico},
  title =	{{Streaming Submodular Maximization Under Matroid Constraints}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{59:1--59:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.59},
  URN =		{urn:nbn:de:0030-drops-164007},
  doi =		{10.4230/LIPIcs.ICALP.2022.59},
  annote =	{Keywords: Submodular maximization, streaming, matroid, random order}
}
  • Refine by Author
  • 10 van Leeuwen, Erik Jan
  • 6 Telle, Jan Arne
  • 4 Mnich, Matthias
  • 4 Vondrák, Jan
  • 3 Dreier, Jan
  • Show More...

  • Refine by Classification
  • 10 Theory of computation → Parameterized complexity and exact algorithms
  • 9 Mathematics of computing → Graph theory
  • 7 Theory of computation → Graph algorithms analysis
  • 5 Theory of computation → Design and analysis of algorithms
  • 5 Theory of computation → Pattern matching
  • Show More...

  • Refine by Keyword
  • 3 Clustering
  • 3 complexity
  • 3 flow analysis
  • 3 graph classes
  • 2 Approximation
  • Show More...

  • Refine by Type
  • 95 document

  • Refine by Publication Year
  • 22 2022
  • 21 2019
  • 10 2020
  • 6 2023
  • 5 2014
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail