2 Search Results for "Wang, Kai"


Document
Improving Local Search for Minimum Weighted Connected Dominating Set Problem by Inner-Layer Local Search

Authors: Bohan Li, Kai Wang, Yiyuan Wang, and Shaowei Cai

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
The minimum weighted connected dominating set (MWCDS) problem is an important variant of connected dominating set problems with wide applications, especially in heterogenous networks and gene regulatory networks. In the paper, we develop a nested local search algorithm called NestedLS for solving MWCDS on classic benchmarks and massive graphs. In this local search framework, we propose two novel ideas to make it effective by utilizing previous search information. First, we design the restart based smoothing mechanism as a diversification method to escape from local optimal. Second, we propose a novel inner-layer local search method to enlarge the candidate removal set, which can be modelled as an optimized version of spanning tree problem. Moreover, inner-layer local search method is a general method for maintaining the connectivity constraint when dealing with massive graphs. Experimental results show that NestedLS outperforms state-of-the-art meta-heuristic algorithms on most instances.

Cite as

Bohan Li, Kai Wang, Yiyuan Wang, and Shaowei Cai. Improving Local Search for Minimum Weighted Connected Dominating Set Problem by Inner-Layer Local Search. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 39:1-39:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.CP.2021.39,
  author =	{Li, Bohan and Wang, Kai and Wang, Yiyuan and Cai, Shaowei},
  title =	{{Improving Local Search for Minimum Weighted Connected Dominating Set Problem by Inner-Layer Local Search}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{39:1--39:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.39},
  URN =		{urn:nbn:de:0030-drops-153304},
  doi =		{10.4230/LIPIcs.CP.2021.39},
  annote =	{Keywords: Operations Research, NP-hard Problem, Local Search, Weighted Connected Dominating Set Problem}
}
Document
An FPTAS of Minimizing Total Weighted Completion Time on Single Machine with Position Constraint

Authors: Gruia Calinescu, Florian Jaehn, Minming Li, and Kai Wang

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
In this paper we study the classical scheduling problem of minimizing the total weighted completion time on a single machine with the constraint that one specific job must be scheduled at a specified position. We give dynamic programs with pseudo-polynomial running time, and a fully polynomial-time approximation scheme (FPTAS).

Cite as

Gruia Calinescu, Florian Jaehn, Minming Li, and Kai Wang. An FPTAS of Minimizing Total Weighted Completion Time on Single Machine with Position Constraint. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 19:1-19:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{calinescu_et_al:LIPIcs.ISAAC.2017.19,
  author =	{Calinescu, Gruia and Jaehn, Florian and Li, Minming and Wang, Kai},
  title =	{{An FPTAS of Minimizing Total Weighted Completion Time on Single Machine with Position Constraint}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{19:1--19:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.19},
  URN =		{urn:nbn:de:0030-drops-82335},
  doi =		{10.4230/LIPIcs.ISAAC.2017.19},
  annote =	{Keywords: FPTAS, Scheduling, Approximation Algorithm}
}
  • Refine by Author
  • 2 Wang, Kai
  • 1 Cai, Shaowei
  • 1 Calinescu, Gruia
  • 1 Jaehn, Florian
  • 1 Li, Bohan
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Operations research
  • 1 Theory of computation → Randomized local search

  • Refine by Keyword
  • 1 Approximation Algorithm
  • 1 FPTAS
  • 1 Local Search
  • 1 NP-hard Problem
  • 1 Operations Research
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2017
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail