3 Search Results for "Wiebe, Nathan"


Document
Track A: Algorithms, Complexity and Games
Improvements in Quantum SDP-Solving with Applications

Authors: Joran van Apeldoorn and András Gilyén

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Following the first paper on quantum algorithms for SDP-solving by Brandão and Svore [Brandão and Svore, 2017] in 2016, rapid developments have been made on quantum optimization algorithms. In this paper we improve and generalize all prior quantum algorithms for SDP-solving and give a simpler and unified framework. We take a new perspective on quantum SDP-solvers and introduce several new techniques. One of these is the quantum operator input model, which generalizes the different input models used in previous work, and essentially any other reasonable input model. This new model assumes that the input matrices are embedded in a block of a unitary operator. In this model we give a O~((sqrt{m}+sqrt{n}gamma)alpha gamma^4) algorithm, where n is the size of the matrices, m is the number of constraints, gamma is the reciprocal of the scale-invariant relative precision parameter, and alpha is a normalization factor of the input matrices. In particular for the standard sparse-matrix access, the above result gives a quantum algorithm where alpha=s. We also improve on recent results of Brandão et al. [Fernando G. S. L. Brandão et al., 2018], who consider the special case when the input matrices are proportional to mixed quantum states that one can query. For this model Brandão et al. [Fernando G. S. L. Brandão et al., 2018] showed that the dependence on n can be replaced by a polynomial dependence on both the rank and the trace of the input matrices. We remove the dependence on the rank and hence require only a dependence on the trace of the input matrices. After we obtain these results we apply them to a few different problems. The most notable of which is the problem of shadow tomography, recently introduced by Aaronson [Aaronson, 2018]. Here we simultaneously improve both the sample and computational complexity of the previous best results. Finally we prove a new Omega~(sqrt{m}alpha gamma) lower bound for solving LPs and SDPs in the quantum operator model, which also implies a lower bound for the model of Brandão et al. [Fernando G. S. L. Brandão et al., 2018].

Cite as

Joran van Apeldoorn and András Gilyén. Improvements in Quantum SDP-Solving with Applications. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 99:1-99:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{vanapeldoorn_et_al:LIPIcs.ICALP.2019.99,
  author =	{van Apeldoorn, Joran and Gily\'{e}n, Andr\'{a}s},
  title =	{{Improvements in Quantum SDP-Solving with Applications}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{99:1--99:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.99},
  URN =		{urn:nbn:de:0030-drops-106750},
  doi =		{10.4230/LIPIcs.ICALP.2019.99},
  annote =	{Keywords: quantum algorithms, semidefinite programming, shadow tomography}
}
Document
Bayesian ACRONYM Tuning

Authors: John Gamble, Christopher Granade, and Nathan Wiebe

Published in: LIPIcs, Volume 135, 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)


Abstract
We provide an algorithm that uses Bayesian randomized benchmarking in concert with a local optimizer, such as SPSA, to find a set of controls that optimizes that average gate fidelity. We call this method Bayesian ACRONYM tuning as a reference to the analogous ACRONYM tuning algorithm. Bayesian ACRONYM distinguishes itself in its ability to retain prior information from experiments that use nearby control parameters; whereas traditional ACRONYM tuning does not use such information and can require many more measurements as a result. We prove that such information reuse is possible under the relatively weak assumption that the true model parameters are Lipschitz-continuous functions of the control parameters. We also perform numerical experiments that demonstrate that over-rotation errors in single qubit gates can be automatically tuned from 88% to 99.95% average gate fidelity using less than 1kB of data and fewer than 20 steps of the optimizer.

Cite as

John Gamble, Christopher Granade, and Nathan Wiebe. Bayesian ACRONYM Tuning. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 135, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gamble_et_al:LIPIcs.TQC.2019.7,
  author =	{Gamble, John and Granade, Christopher and Wiebe, Nathan},
  title =	{{Bayesian ACRONYM Tuning}},
  booktitle =	{14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-112-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{135},
  editor =	{van Dam, Wim and Man\v{c}inska, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2019.7},
  URN =		{urn:nbn:de:0030-drops-103995},
  doi =		{10.4230/LIPIcs.TQC.2019.7},
  annote =	{Keywords: Quantum Computing, Randomized Benchmarking}
}
Document
Robust Online Hamiltonian Learning

Authors: Christopher E. Granade, Christopher Ferrie, Nathan Wiebe, and D. G. Cory

Published in: LIPIcs, Volume 22, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)


Abstract
In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance. We further illustrate the practicality of our algorithm by applying it to two test problems: (1) learning an unknown frequency and the decoherence time for a single-qubit quantum system and (2) learning couplings in a many-qubit Ising model Hamiltonian with no external magnetic field.

Cite as

Christopher E. Granade, Christopher Ferrie, Nathan Wiebe, and D. G. Cory. Robust Online Hamiltonian Learning. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 106-125, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{granade_et_al:LIPIcs.TQC.2013.106,
  author =	{Granade, Christopher E. and Ferrie, Christopher and Wiebe, Nathan and Cory, D. G.},
  title =	{{Robust Online Hamiltonian Learning}},
  booktitle =	{8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)},
  pages =	{106--125},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-55-2},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{22},
  editor =	{Severini, Simone and Brandao, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2013.106},
  URN =		{urn:nbn:de:0030-drops-43185},
  doi =		{10.4230/LIPIcs.TQC.2013.106},
  annote =	{Keywords: Quantum information, sequential Monte Carlo, Bayesian, experiment design, parameter estimation}
}
  • Refine by Author
  • 2 Wiebe, Nathan
  • 1 Cory, D. G.
  • 1 Ferrie, Christopher
  • 1 Gamble, John
  • 1 Gilyén, András
  • Show More...

  • Refine by Classification
  • 1 Hardware → Quantum computation
  • 1 Theory of computation → Quantum computation theory

  • Refine by Keyword
  • 1 Bayesian
  • 1 Quantum Computing
  • 1 Quantum information
  • 1 Randomized Benchmarking
  • 1 experiment design
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2019
  • 1 2013

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail