3 Search Results for "Xiao, Guohui"


Document
Short Paper
GeoQAMap - Geographic Question Answering with Maps Leveraging LLM and Open Knowledge Base (Short Paper)

Authors: Yu Feng, Linfang Ding, and Guohui Xiao

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
GeoQA (Geographic Question Answering) is an emerging research field in GIScience, aimed at answering geographic questions in natural language. However, developing systems that seamlessly integrate structured geospatial data with unstructured natural language queries remains challenging. Recent advancements in Large Language Models (LLMs) have facilitated the application of natural language processing in various tasks. To achieve this goal, this study introduces GeoQAMap, a system that first translates natural language questions into SPARQL queries, then retrieves geospatial information from Wikidata, and finally generates interactive maps as visual answers. The system exhibits great potential for integration with other geospatial data sources such as OpenStreetMap and CityGML, enabling complicated geographic question answering involving further spatial operations.

Cite as

Yu Feng, Linfang Ding, and Guohui Xiao. GeoQAMap - Geographic Question Answering with Maps Leveraging LLM and Open Knowledge Base (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 28:1-28:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.GIScience.2023.28,
  author =	{Feng, Yu and Ding, Linfang and Xiao, Guohui},
  title =	{{GeoQAMap - Geographic Question Answering with Maps Leveraging LLM and Open Knowledge Base}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{28:1--28:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.28},
  URN =		{urn:nbn:de:0030-drops-189233},
  doi =		{10.4230/LIPIcs.GIScience.2023.28},
  annote =	{Keywords: Geographic Question Answering, Large Language Models, SPARQL, Knowledge Base, Wikidata}
}
Document
Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases

Authors: Sebastian Brandt, Diego Calvanese, Elem Güzel Kalaycı, Roman Kontchakov, Benjamin Mörzinger, Vladislav Ryzhikov, Guohui Xiao, and Michael Zakharyaschev

Published in: LIPIcs, Volume 147, 26th International Symposium on Temporal Representation and Reasoning (TIME 2019)


Abstract
Motivated by two industrial use cases that involve detecting events of interest in (asynchronous) time series from sensors in manufacturing rigs and gas turbines, we design an expressive rule language DslD equipped with interval aggregate functions (such as weighted average over a time interval), Allen’s interval relations and various metric constructs. We demonstrate how to model events in the uses cases in terms of DslD programs. We show that answering DslD queries in our use cases can be reduced to evaluating SQL queries. Our experiments with the use cases, carried out on the Apache Spark system, show that such SQL queries scale well on large real-world datasets.

Cite as

Sebastian Brandt, Diego Calvanese, Elem Güzel Kalaycı, Roman Kontchakov, Benjamin Mörzinger, Vladislav Ryzhikov, Guohui Xiao, and Michael Zakharyaschev. Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{brandt_et_al:LIPIcs.TIME.2019.7,
  author =	{Brandt, Sebastian and Calvanese, Diego and Kalayc{\i}, Elem G\"{u}zel and Kontchakov, Roman and M\"{o}rzinger, Benjamin and Ryzhikov, Vladislav and Xiao, Guohui and Zakharyaschev, Michael},
  title =	{{Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases}},
  booktitle =	{26th International Symposium on Temporal Representation and Reasoning (TIME 2019)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-127-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{147},
  editor =	{Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.7},
  URN =		{urn:nbn:de:0030-drops-113658},
  doi =		{10.4230/LIPIcs.TIME.2019.7},
  annote =	{Keywords: Ontology-based data access, temporal logic, sensor log data}
}
Document
Expressivity and Complexity of MongoDB Queries

Authors: Elena Botoeva, Diego Calvanese, Benjamin Cogrel, and Guohui Xiao

Published in: LIPIcs, Volume 98, 21st International Conference on Database Theory (ICDT 2018)


Abstract
In this paper, we consider MongoDB, a widely adopted but not formally understood database system managing JSON documents and equipped with a powerful query mechanism, called the aggregation framework. We provide a clean formal abstraction of this query language, which we call MQuery. We study the expressivity of MQuery, showing the equivalence of its well-typed fragment with nested relational algebra. We further investigate the computational complexity of significant fragments of it, obtaining several (tight) bounds in combined complexity, which range from LogSpace to alternating exponential-time with a polynomial number of alternations.

Cite as

Elena Botoeva, Diego Calvanese, Benjamin Cogrel, and Guohui Xiao. Expressivity and Complexity of MongoDB Queries. In 21st International Conference on Database Theory (ICDT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 98, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{botoeva_et_al:LIPIcs.ICDT.2018.9,
  author =	{Botoeva, Elena and Calvanese, Diego and Cogrel, Benjamin and Xiao, Guohui},
  title =	{{Expressivity and Complexity of MongoDB Queries}},
  booktitle =	{21st International Conference on Database Theory (ICDT 2018)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-063-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{98},
  editor =	{Kimelfeld, Benny and Amsterdamer, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2018.9},
  URN =		{urn:nbn:de:0030-drops-86074},
  doi =		{10.4230/LIPIcs.ICDT.2018.9},
  annote =	{Keywords: MongoDB, NoSQL, aggregation framework, expressivity}
}
  • Refine by Author
  • 3 Xiao, Guohui
  • 2 Calvanese, Diego
  • 1 Botoeva, Elena
  • 1 Brandt, Sebastian
  • 1 Cogrel, Benjamin
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Cartography
  • 1 Computing methodologies → Ontology engineering
  • 1 Computing methodologies → Temporal reasoning
  • 1 Theory of computation → Modal and temporal logics

  • Refine by Keyword
  • 1 Geographic Question Answering
  • 1 Knowledge Base
  • 1 Large Language Models
  • 1 MongoDB
  • 1 NoSQL
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2018
  • 1 2019
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail