4 Search Results for "Yu, Guan-Ru"


Document
Enumeration of d-Combining Tree-Child Networks

Authors: Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, and Guan-Ru Yu

Published in: LIPIcs, Volume 225, 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)


Abstract
Tree-child networks are one of the most prominent network classes for modeling evolutionary processes which contain reticulation events. Several recent studies have addressed counting questions for bicombining tree-child networks which are tree-child networks with every reticulation node having exactly two parents. In this paper, we extend these studies to d-combining tree-child networks where every reticulation node has now d ≥ 2 parents. Moreover, we also give results and conjectures on the distributional behavior of the number of reticulation nodes of a network which is drawn uniformly at random from the set of all tree-child networks with the same number of leaves.

Cite as

Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, and Guan-Ru Yu. Enumeration of d-Combining Tree-Child Networks. In 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 225, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.AofA.2022.5,
  author =	{Chang, Yu-Sheng and Fuchs, Michael and Liu, Hexuan and Wallner, Michael and Yu, Guan-Ru},
  title =	{{Enumeration of d-Combining Tree-Child Networks}},
  booktitle =	{33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-230-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{225},
  editor =	{Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.5},
  URN =		{urn:nbn:de:0030-drops-160914},
  doi =		{10.4230/LIPIcs.AofA.2022.5},
  annote =	{Keywords: Phylogenetic network, tree-child network, d-combining tree-child network, exact enumeration, asymptotic enumeration, reticulation node, limit law, stretched exponential}
}
Document
Model Checking Quantum Continuous-Time Markov Chains

Authors: Ming Xu, Jingyi Mei, Ji Guan, and Nengkun Yu

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we initialise the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time system, we specify the temporal properties on QCTMC by signal temporal logic (STL). To effectively check the atomic propositions in STL, we develop a state-of-the-art real root isolation algorithm under Schanuel’s conjecture; further, we check the general STL formula by interval operations with a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula by calling the real root isolation algorithm. A running example of an open quantum walk is provided to demonstrate our method.

Cite as

Ming Xu, Jingyi Mei, Ji Guan, and Nengkun Yu. Model Checking Quantum Continuous-Time Markov Chains. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{xu_et_al:LIPIcs.CONCUR.2021.13,
  author =	{Xu, Ming and Mei, Jingyi and Guan, Ji and Yu, Nengkun},
  title =	{{Model Checking Quantum Continuous-Time Markov Chains}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.13},
  URN =		{urn:nbn:de:0030-drops-143908},
  doi =		{10.4230/LIPIcs.CONCUR.2021.13},
  annote =	{Keywords: Model Checking, Formal Logic, Quantum Computing, Computer Algebra}
}
Document
From Independent Sets and Vertex Colorings to Isotropic Spaces and Isotropic Decompositions: Another Bridge Between Graphs and Alternating Matrix Spaces

Authors: Xiaohui Bei, Shiteng Chen, Ji Guan, Youming Qiao, and Xiaoming Sun

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
In the 1970’s, Lovász built a bridge between graphs and alternating matrix spaces, in the context of perfect matchings (FCT 1979). A similar connection between bipartite graphs and matrix spaces plays a key role in the recent resolutions of the non-commutative rank problem (Garg-Gurvits-Oliveira-Wigderson, FOCS 2016; Ivanyos-Qiao-Subrahmanyam, ITCS 2017). In this paper, we lay the foundation for another bridge between graphs and alternating matrix spaces, in the context of independent sets and vertex colorings. The corresponding structures in alternating matrix spaces are isotropic spaces and isotropic decompositions, both useful structures in group theory and manifold theory. We first show that the maximum independent set problem and the vertex c-coloring problem reduce to the maximum isotropic space problem and the isotropic c-decomposition problem, respectively. Next, we show that several topics and results about independent sets and vertex colorings have natural correspondences for isotropic spaces and decompositions. These include algorithmic problems, such as the maximum independent set problem for bipartite graphs, and exact exponential-time algorithms for the chromatic number, as well as mathematical questions, such as the number of maximal independent sets, and the relation between the maximum degree and the chromatic number. These connections lead to new interactions between graph theory and algebra. Some results have concrete applications to group theory and manifold theory, and we initiate a variant of these structures in the context of quantum information theory. Finally, we propose several open questions for further exploration. (Dedicated to the memory of Ker-I Ko)

Cite as

Xiaohui Bei, Shiteng Chen, Ji Guan, Youming Qiao, and Xiaoming Sun. From Independent Sets and Vertex Colorings to Isotropic Spaces and Isotropic Decompositions: Another Bridge Between Graphs and Alternating Matrix Spaces. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 8:1-8:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bei_et_al:LIPIcs.ITCS.2020.8,
  author =	{Bei, Xiaohui and Chen, Shiteng and Guan, Ji and Qiao, Youming and Sun, Xiaoming},
  title =	{{From Independent Sets and Vertex Colorings to Isotropic Spaces and Isotropic Decompositions: Another Bridge Between Graphs and Alternating Matrix Spaces}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{8:1--8:48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.8},
  URN =		{urn:nbn:de:0030-drops-116932},
  doi =		{10.4230/LIPIcs.ITCS.2020.8},
  annote =	{Keywords: independent set, vertex coloring, graphs, matrix spaces, isotropic subspace}
}
Document
The Number of Double Triangles in Random Planar Maps

Authors: Michael Drmota and Guan-Ru Yu

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
The purpose of this paper is to provide a central limit theorem for the number of occurrences of double triangles in random planar maps. This is the first result of this kind that goes beyond face counts of given valency. The method is based on generating functions, an involved combinatorial decomposition scheme that leads to a system of catalytic functional equations and an analytic extension of the Quadratic Method to systems of equations.

Cite as

Michael Drmota and Guan-Ru Yu. The Number of Double Triangles in Random Planar Maps. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{drmota_et_al:LIPIcs.AofA.2018.19,
  author =	{Drmota, Michael and Yu, Guan-Ru},
  title =	{{The Number of Double Triangles in Random Planar Maps}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.19},
  URN =		{urn:nbn:de:0030-drops-89120},
  doi =		{10.4230/LIPIcs.AofA.2018.19},
  annote =	{Keywords: Planar maps, pattern occuence, generating functions, quadratic method, central limit theorem}
}
  • Refine by Author
  • 2 Guan, Ji
  • 2 Yu, Guan-Ru
  • 1 Bei, Xiaohui
  • 1 Chang, Yu-Sheng
  • 1 Chen, Shiteng
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Algebraic algorithms
  • 1 Computing methodologies → Linear algebra algorithms
  • 1 Computing methodologies → Symbolic and algebraic algorithms
  • 1 Mathematics of computing → Discrete mathematics
  • 1 Mathematics of computing → Enumeration
  • Show More...

  • Refine by Keyword
  • 1 Computer Algebra
  • 1 Formal Logic
  • 1 Model Checking
  • 1 Phylogenetic network
  • 1 Planar maps
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2018
  • 1 2020
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail