4 Search Results for "Zhou, Hong-Sheng"


Document
Advanced Composition Theorems for Differential Obliviousness

Authors: Mingxun Zhou, Mengshi Zhao, T-H. Hubert Chan, and Elaine Shi

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Differential obliviousness (DO) is a privacy notion which mandates that the access patterns of a program satisfy differential privacy. Earlier works have shown that in numerous applications, differential obliviousness allows us to circumvent fundamental barriers pertaining to fully oblivious algorithms, resulting in asymptotical (and sometimes even polynomial) performance improvements. Although DO has been applied to various contexts, including the design of algorithms, data structures, and protocols, its compositional properties are not explored until the recent work of Zhou et al. (Eurocrypt'23). Specifically, Zhou et al. showed that the original DO notion is not composable. They then proposed a refinement of DO called neighbor-preserving differential obliviousness (NPDO), and proved a basic composition for NPDO. In Zhou et al.’s basic composition theorem for NPDO, the privacy loss is linear in k for k-fold composition. In comparison, for standard differential privacy, we can enjoy roughly √k loss for k-fold composition by applying the well-known advanced composition theorem given an appropriate parameter range. Therefore, a natural question left open by their work is whether we can also prove an analogous advanced composition for NPDO. In this paper, we answer this question affirmatively. As a key step in proving an advanced composition theorem for NPDO, we define a more operational notion called symmetric NPDO which we prove to be equivalent to NPDO. Using symmetric NPDO as a stepping stone, we also show how to generalize NPDO to more general notions of divergence, resulting in Rényi-NPDO, zero-concentrated-NPDO, Gassian-NPDO, and g-NPDO notions. We also prove composition theorems for these generalized notions of NPDO.

Cite as

Mingxun Zhou, Mengshi Zhao, T-H. Hubert Chan, and Elaine Shi. Advanced Composition Theorems for Differential Obliviousness. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 103:1-103:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zhou_et_al:LIPIcs.ITCS.2024.103,
  author =	{Zhou, Mingxun and Zhao, Mengshi and Chan, T-H. Hubert and Shi, Elaine},
  title =	{{Advanced Composition Theorems for Differential Obliviousness}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{103:1--103:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.103},
  URN =		{urn:nbn:de:0030-drops-196315},
  doi =		{10.4230/LIPIcs.ITCS.2024.103},
  annote =	{Keywords: Differential Privacy, Oblivious Algorithms}
}
Document
APPROX
Experimental Design for Any p-Norm

Authors: Lap Chi Lau, Robert Wang, and Hong Zhou

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We consider a general p-norm objective for experimental design problems that captures some well-studied objectives (D/A/E-design) as special cases. We prove that a randomized local search approach provides a unified algorithm to solve this problem for all nonnegative integer p. This provides the first approximation algorithm for the general p-norm objective, and a nice interpolation of the best known bounds of the special cases.

Cite as

Lap Chi Lau, Robert Wang, and Hong Zhou. Experimental Design for Any p-Norm. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lau_et_al:LIPIcs.APPROX/RANDOM.2023.4,
  author =	{Lau, Lap Chi and Wang, Robert and Zhou, Hong},
  title =	{{Experimental Design for Any p-Norm}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.4},
  URN =		{urn:nbn:de:0030-drops-188292},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.4},
  annote =	{Keywords: Approximation Algorithm, Optimal Experimental Design, Randomized Local Search}
}
Document
Towards Quantum One-Time Memories from Stateless Hardware

Authors: Anne Broadbent, Sevag Gharibian, and Hong-Sheng Zhou

Published in: LIPIcs, Volume 158, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)


Abstract
A central tenet of theoretical cryptography is the study of the minimal assumptions required to implement a given cryptographic primitive. One such primitive is the one-time memory (OTM), introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which is a classical functionality modeled after a non-interactive 1-out-of-2 oblivious transfer, and which is complete for one-time classical and quantum programs. It is known that secure OTMs do not exist in the standard model in both the classical and quantum settings. Here, we propose a scheme for using quantum information, together with the assumption of stateless (i.e., reusable) hardware tokens, to build statistically secure OTMs. Via the semidefinite programming-based quantum games framework of Gutoski and Watrous [STOC 2007], we prove security for a malicious receiver, against a linear number of adaptive queries to the token, in the quantum universal composability framework, but leave open the question of security against a polynomial amount of queries. Compared to alternative schemes derived from the literature on quantum money, our scheme is technologically simple since it is of the "prepare-and-measure" type. We also show our scheme is "tight" according to two scenarios.

Cite as

Anne Broadbent, Sevag Gharibian, and Hong-Sheng Zhou. Towards Quantum One-Time Memories from Stateless Hardware. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 158, pp. 6:1-6:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{broadbent_et_al:LIPIcs.TQC.2020.6,
  author =	{Broadbent, Anne and Gharibian, Sevag and Zhou, Hong-Sheng},
  title =	{{Towards Quantum One-Time Memories from Stateless Hardware}},
  booktitle =	{15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)},
  pages =	{6:1--6:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-146-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{158},
  editor =	{Flammia, Steven T.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2020.6},
  URN =		{urn:nbn:de:0030-drops-120654},
  doi =		{10.4230/LIPIcs.TQC.2020.6},
  annote =	{Keywords: quantum cryptography, one-time memories, semi-definite programming}
}
Document
Sound and Fine-grain Specification of Ideal Functionalities

Authors: Juan Garay, Aggelos Kiayias, and Hong-Sheng Zhou

Published in: Dagstuhl Seminar Proceedings, Volume 8491, Theoretical Foundations of Practical Information Security (2009)


Abstract
Nowadays it is widely accepted to formulate the security of a protocol carrying out a given task via the "trusted-party paradigm," where the protocol execution is compared with an ideal process where the outputs are computed by a trusted party that sees all the inputs. A protocol is said to securely carry out a given task if running the protocol with a realistic adversary amounts to "emulating" the ideal process with the appropriate trusted party. In the Universal Composability (UC) framework the program run by the trusted party is called an ideal functionality. While this simulation-based security formulation provides strong security guarantees, its usefulness is contingent on the properties and correct specification of the ideal functionality, which, as demonstrated in recent years by the coexistence of complex, multiple functionalities for the same task as well as by their "unstable" nature, does not seem to be an easy task. In this paper we address this problem, by introducing a general methodology for the sound specification of ideal functionalities. First, we introduce the class of canonical ideal functionalities for a cryptographic task, which unifies the syntactic specification of a large class of cryptographic tasks under the same basic template functionality. Furthermore, this representation enables the isolation of the individual properties of a cryptographic task as separate members of the corresponding class. By endowing the class of canonical functionalities with an algebraic structure we are able to combine basic functionalities to a single final canonical functionality for a given task. Effectively, this puts forth a bottom-up approach for the specification of ideal functionalities: first one defines a set of basic constituent functionalities for the task at hand, and then combines them into a single ideal functionality taking advantage of the algebraic structure. In our framework, the constituent functionalities of a task can be derived either directly or, following a translation strategy we introduce, from existing game-based definitions; such definitions have in many cases captured desired individual properties of cryptographic tasks, albeit in less adversarial settings than universal composition. Our translation methodology entails a sequence of steps that derive a corresponding canonical functionality given a game-based definition. In this way, we obtain a well-defined mapping of game-based security properties to their corresponding UC counterparts. Finally, we demonstrate the power of our approach by applying our methodology to a variety of basic cryptographic tasks, including commitments, digital signatures, zero-knowledge proofs, and oblivious transfer. While in some cases our derived canonical functionalities are equivalent to existing formulations, thus attesting to the validity of our approach, in others they differ, enabling us to "debug" previous definitions and pinpoint their shortcomings.

Cite as

Juan Garay, Aggelos Kiayias, and Hong-Sheng Zhou. Sound and Fine-grain Specification of Ideal Functionalities. In Theoretical Foundations of Practical Information Security. Dagstuhl Seminar Proceedings, Volume 8491, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{garay_et_al:DagSemProc.08491.5,
  author =	{Garay, Juan and Kiayias, Aggelos and Zhou, Hong-Sheng},
  title =	{{Sound and Fine-grain Specification of Ideal Functionalities}},
  booktitle =	{Theoretical Foundations of Practical Information Security},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{8491},
  editor =	{Ran Canetti and Shafi Goldwasser and G\"{u}nter M\"{u}ller and Rainer Steinwandt},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08491.5},
  URN =		{urn:nbn:de:0030-drops-18911},
  doi =		{10.4230/DagSemProc.08491.5},
  annote =	{Keywords: Security definitions, universal composability, cryptographic protocols, lattices and partial orders.}
}
  • Refine by Author
  • 2 Zhou, Hong-Sheng
  • 1 Broadbent, Anne
  • 1 Chan, T-H. Hubert
  • 1 Garay, Juan
  • 1 Gharibian, Sevag
  • Show More...

  • Refine by Classification
  • 1 Security and privacy → Information-theoretic techniques
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Cryptographic protocols
  • 1 Theory of computation → Rounding techniques

  • Refine by Keyword
  • 1 Approximation Algorithm
  • 1 Differential Privacy
  • 1 Oblivious Algorithms
  • 1 Optimal Experimental Design
  • 1 Randomized Local Search
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2009
  • 1 2020
  • 1 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail