License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2019.1
URN: urn:nbn:de:0030-drops-100949
URL: http://drops.dagstuhl.de/opus/volltexte/2018/10094/
Go to the corresponding LIPIcs Volume Portal


Agrawal, Shipra ; Shadravan, Mohammad ; Stein, Cliff

Submodular Secretary Problem with Shortlists

pdf-format:
LIPIcs-ITCS-2019-1.pdf (0.6 MB)


Abstract

In submodular k-secretary problem, the goal is to select k items in a randomly ordered input so as to maximize the expected value of a given monotone submodular function on the set of selected items. In this paper, we introduce a relaxation of this problem, which we refer to as submodular k-secretary problem with shortlists. In the proposed problem setting, the algorithm is allowed to choose more than k items as part of a shortlist. Then, after seeing the entire input, the algorithm can choose a subset of size k from the bigger set of items in the shortlist. We are interested in understanding to what extent this relaxation can improve the achievable competitive ratio for the submodular k-secretary problem. In particular, using an O(k) sized shortlist, can an online algorithm achieve a competitive ratio close to the best achievable offline approximation factor for this problem? We answer this question affirmatively by giving a polynomial time algorithm that achieves a 1-1/e-epsilon-O(k^{-1}) competitive ratio for any constant epsilon>0, using a shortlist of size eta_epsilon(k)=O(k). This is especially surprising considering that the best known competitive ratio (in polynomial time) for the submodular k-secretary problem is (1/e-O(k^{-1/2}))(1-1/e) [Thomas Kesselheim and Andreas Tönnis, 2017]. The proposed algorithm also has significant implications for another important problem of submodular function maximization under random order streaming model and k-cardinality constraint. We show that our algorithm can be implemented in the streaming setting using a memory buffer of size eta_epsilon(k)=O(k) to achieve a 1-1/e-epsilon-O(k^{-1}) approximation. This result substantially improves upon [Norouzi-Fard et al., 2018], which achieved the previously best known approximation factor of 1/2 + 8 x 10^{-14} using O(k log k) memory; and closely matches the known upper bound for this problem [McGregor and Vu, 2017].

BibTeX - Entry

@InProceedings{agrawal_et_al:LIPIcs:2018:10094,
  author =	{Shipra Agrawal and Mohammad Shadravan and Cliff Stein},
  title =	{{Submodular Secretary Problem with Shortlists}},
  booktitle =	{10th Innovations in Theoretical Computer Science  Conference (ITCS 2019)},
  pages =	{1:1--1:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{124},
  editor =	{Avrim Blum},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/10094},
  URN =		{urn:nbn:de:0030-drops-100949},
  doi =		{10.4230/LIPIcs.ITCS.2019.1},
  annote =	{Keywords: Submodular Optimization, Secretary Problem, Streaming Algorithms}
}

Keywords: Submodular Optimization, Secretary Problem, Streaming Algorithms
Seminar: 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)
Issue Date: 2018
Date of publication: 21.12.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI