Abstract
We consider the task of measuring time with probabilistic threshold gates implemented by bioinspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect.
Discovering the underlying mechanisms by which the brain perceives the duration of time is one of the largest open enigma in computational neuroscience. To gain a better algorithmic understanding onto these processes, we introduce the neural timer problem. In this problem, one is given a time parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum sized neural network (measured by the number of auxiliary neurons) in which every spike from x in a given round i, makes the output y fire for the subsequent t consecutive rounds.
We first consider a deterministic implementation of a neural timer and show that Theta(log t) (deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1delta, and should stop firing after at most 2t rounds with probability 1delta for some input parameter delta in (0,1). Our key result is a construction of a neural timer with O(log log 1/delta) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Omega(min{log log 1/delta, log t}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks.
Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks. In the spirit of distributed synchronizers [AwerbuchPeleg, FOCS'90], we provide a general transformation (or simulation) that can take any synchronized network solution and simulate it in an asynchronous setting (where edges have arbitrary response latencies) while incurring a small overhead w.r.t the number of neurons and computation time.
BibTeX  Entry
@InProceedings{hitron_et_al:LIPIcs:2019:11178,
author = {Yael Hitron and Merav Parter},
title = {{Counting to Ten with Two Fingers: Compressed Counting with Spiking Neurons}},
booktitle = {27th Annual European Symposium on Algorithms (ESA 2019)},
pages = {57:157:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {9783959771245},
ISSN = {18688969},
year = {2019},
volume = {144},
editor = {Michael A. Bender and Ola Svensson and Grzegorz Herman},
publisher = {Schloss DagstuhlLeibnizZentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/11178},
URN = {urn:nbn:de:0030drops111782},
doi = {10.4230/LIPIcs.ESA.2019.57},
annote = {Keywords: stochastic neural networks, approximate counting, synchronizer}
}
Keywords: 

stochastic neural networks, approximate counting, synchronizer 
Seminar: 

27th Annual European Symposium on Algorithms (ESA 2019) 
Issue Date: 

2019 
Date of publication: 

06.09.2019 