The Maximum Exposure Problem

Authors Neeraj Kumar, Stavros Sintos, Subhash Suri



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2019.19.pdf
  • Filesize: 0.72 MB
  • 20 pages

Document Identifiers

Author Details

Neeraj Kumar
  • Department of Computer Science, University of California, Santa Barbara, USA
Stavros Sintos
  • Duke University, Durham, NC, USA
Subhash Suri
  • Department of Computer Science, University of California, Santa Barbara, USA

Cite AsGet BibTex

Neeraj Kumar, Stavros Sintos, and Subhash Suri. The Maximum Exposure Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.19

Abstract

Given a set of points P and axis-aligned rectangles R in the plane, a point p in P is called exposed if it lies outside all rectangles in R. In the max-exposure problem, given an integer parameter k, we want to delete k rectangles from R so as to maximize the number of exposed points. We show that the problem is NP-hard and assuming plausible complexity conjectures is also hard to approximate even when rectangles in R are translates of two fixed rectangles. However, if R only consists of translates of a single rectangle, we present a polynomial-time approximation scheme. For general rectangle range space, we present a simple O(k) bicriteria approximation algorithm; that is by deleting O(k^2) rectangles, we can expose at least Omega(1/k) of the optimal number of points.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • max-exposure
  • PTAS
  • densest k-subgraphs
  • geometric constraint removal
  • Network resilience

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. P. K Agarwal and J. Pan. Near-linear algorithms for geometric hitting sets and set covers. In Proceedings of 30th SoCG, page 271. ACM, 2014. Google Scholar
  2. S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances of NP-hard problems. Journal of computer and system sciences, 58(1):193-210, 1999. Google Scholar
  3. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. Journal of Algorithms, 34(2):203-221, 2000. Google Scholar
  4. S. Bandyapadhyay, N. Kumar, S. Suri, and K. Varadarajan. Improved Approximation Bounds for the Minimum Constraint Removal Problem. In Proceedings of 21st APPROX, pages 2:1-2:19, 2018. Google Scholar
  5. S. Bereg and D. G. Kirkpatrick. Approximating Barrier Resilience in Wireless Sensor Networks. In Proceedings of 5th ALGOSENSORS, pages 29-40, 2009. Google Scholar
  6. A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high log-densities: an O (n^1/4) approximation for densest k-subgraph. In Proceedings of the 42nd STOC, pages 201-210. ACM, 2010. Google Scholar
  7. H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension. Discrete & Computational Geometry, 14(4):463-479, 1995. Google Scholar
  8. C. Chekuri, K. L. Clarkson, and S. Har-Peled. On the set multi-cover problem in geometric settings. ACM Transactions on Algorithms (TALG), 9(1):9, 2012. Google Scholar
  9. E. Chlamtac, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca. The Densest k-Subhypergraph Problem. In Proceedings of 19th APPROX, pages 6:1-6:19, 2016. Google Scholar
  10. E. Chlamtáč, M. Dinitz, and Y. Makarychev. Minimizing the union: Tight approximations for small set bipartite vertex expansion. In Proceedings of the 28th SODA, pages 881-899, 2017. Google Scholar
  11. K. L. Clarkson and P. W. Shor. Application of Random Sampling in Computational Geometry, II. Discrete & Computational Geometry, 4:387-421, 1989. Google Scholar
  12. M. Cygan, F. Grandoni, S. Leonardi, M. Mucha, M. Pilipczuk, and P. Sankowski. Approximation Algorithms for Union and Intersection Covering Problems. In Proceedings of 31st FSTTCS, page 28, 2011. Google Scholar
  13. E. Eiben, J. Gemmell, I. Kanj, and A. Youngdahl. Improved results for minimum constraint removal. In Proceedings of 32nd AAAI Conference on Artificial Intelligence, 2018. Google Scholar
  14. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):634-652, 1998. Google Scholar
  15. U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica, 29(3):410-421, 2001. Google Scholar
  16. U. Feige and M. Seltser. On the Densest K-subgraph Problems. Technical report, Weizmann Institute of Science, Jerusalem, Israel, 1997. Google Scholar
  17. R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane are NP-complete. Information processing letters, 12(3):133-137, 1981. Google Scholar
  18. D. S. Hochbaum and W Maass. Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130-136, 1985. Google Scholar
  19. M. Korman, M. Löffler, R. I. Silveira, and D. Strash. On the complexity of barrier resilience for fat regions and bounded ply. Comput. Geom., 72:34-51, 2018. Google Scholar
  20. N. H. Mustafa, R. Raman, and S. Ray. Settling the APX-hardness status for geometric set cover. In Proceedings of 55th FOCS, pages 541-550. IEEE, 2014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail