Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions

Authors Zongchen Chen, Santosh S. Vempala



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2019.64.pdf
  • Filesize: 460 kB
  • 12 pages

Document Identifiers

Author Details

Zongchen Chen
  • School of Computer Science, Georgia Institute of Technology, USA
Santosh S. Vempala
  • School of Computer Science, Georgia Institute of Technology, USA

Acknowledgements

We are grateful to Yin Tat Lee for helpful discussions.

Cite AsGet BibTex

Zongchen Chen and Santosh S. Vempala. Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 64:1-64:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.64

Abstract

We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density proportional to e^{-f} where f:R^d -> R is mu-strongly convex and L-smooth (the condition number is kappa = L/mu). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is O(kappa), improving on the previous best bound of O(kappa^{1.5}); we complement this with an example where the relaxation time is Omega(kappa). When implemented using a nearly optimal ODE solver, HMC returns an epsilon-approximate point in 2-Wasserstein distance using O~((kappa d)^{0.5} epsilon^{-1}) gradient evaluations per step and O~((kappa d)^{1.5}epsilon^{-1}) total time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Random walks and Markov chains
  • Theory of computation → Design and analysis of algorithms
Keywords
  • logconcave distribution
  • sampling
  • Hamiltonian Monte Carlo
  • spectral gap
  • strong convexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. David Applegate and Ravi Kannan. Sampling and integration of near log-concave functions. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC), pages 156-163. ACM, 1991. Google Scholar
  2. Niladri S. Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L. Bartlett, and Michael I. Jordan. On the theory of variance reduction for stochastic gradient Monte Carlo. In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018. Google Scholar
  3. Xiang Cheng, Niladri S. Chatterji, Yasin Abbasi-Yadkori, Peter L. Bartlett, and Michael I. Jordan. Sharp convergence rates for Langevin dynamics in the nonconvex setting. ArXiv preprint, 2018. URL: http://arxiv.org/abs/1805.01648.
  4. Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan. Underdamped Langevin MCMC: A non-asymptotic analysis. In Proceedings of the 2018 Conference on Learning Theory (COLT), 2018. Google Scholar
  5. Arnak S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651-676, 2017. Google Scholar
  6. Arnak S. Dalalyan and Avetik Karagulyan. User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient. Stochastic Processes and their Applications, 2019. Google Scholar
  7. Arnak S. Dalalyan and Lionel Riou-Durand. On sampling from a log-concave density using kinetic Langevin diffusions. ArXiv preprint, 2018. URL: http://arxiv.org/abs/1807.09382.
  8. Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. Log-concave sampling: Metropolis-Hastings algorithms are fast! In Proceedings of the 2018 Conference on Learning Theory (COLT), 2018. Google Scholar
  9. Yin Tat Lee, Zhao Song, and Santosh S. Vempala. Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities. ArXiv preprint, 2018. URL: http://arxiv.org/abs/1812.06243.
  10. Yin Tat Lee and Santosh S. Vempala. Convergence rate of Riemannian Hamiltonian Monte Carlo and faster polytope volume computation. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1115-1121. ACM, 2018. Google Scholar
  11. László Lovász and Santosh S. Vempala. Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 57-68. IEEE, 2006. Google Scholar
  12. Yi-An Ma, Niladri Chatterji, Xiang Cheng, Nicolas Flammarion, Peter Bartlett, and Michael I. Jordan. Is There an Analog of Nesterov Acceleration for MCMC? ArXiv preprint, 2019. URL: http://arxiv.org/abs/1902.00996.
  13. Oren Mangoubi and Aaron Smith. Mixing of Hamiltonian Monte Carlo on strongly log-concave distributions 1: continuous dynamics. ArXiv preprint, 2017. URL: http://arxiv.org/abs/1708.07114.
  14. Oren Mangoubi and Aaron Smith. Mixing of Hamiltonian Monte Carlo on strongly log-concave distributions 2: Numerical integrators. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), pages 586-595, 2019. Google Scholar
  15. Oren Mangoubi and Nisheeth Vishnoi. Dimensionally tight bounds for second-order Hamiltonian Monte Carlo. In Advances in Neural Information Processing Systems (NIPS), pages 6027-6037, 2018. Google Scholar
  16. Yann Ollivier. Ricci curvature of Markov chains on metric spaces. Journal of Functional Analysis, 256(3):810-864, 2009. Google Scholar
  17. Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis. In Proceedings of the 2017 Conference on Learning Theory (COLT), 2017. Google Scholar
  18. Christof Seiler, Simon Rubinstein-Salzedo, and Susan Holmes. Positive curvature and Hamiltonian Monte Carlo. In Advances in Neural Information Processing Systems (NIPS), pages 586-594, 2014. Google Scholar
  19. Santosh S. Vempala and Andre Wibisono. Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices. ArXiv preprint, 2019. URL: http://arxiv.org/abs/1903.08568.
  20. Andre Wibisono. Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem. In Proceedings of the 2018 Conference on Learning Theory (COLT), 2018. Google Scholar
  21. Yuchen Zhang, Percy S. Liang, and Moses Charikar. A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics. In Proceedings of the 2017 Conference on Learning Theory (COLT), 2017. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail