License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2015.265
URN: urn:nbn:de:0030-drops-53073
URL: http://drops.dagstuhl.de/opus/volltexte/2015/5307/
Go to the corresponding LIPIcs Volume Portal


Friggstad, Zachary ; Gao, Zhihan

On Linear Programming Relaxations for Unsplittable Flow in Trees

pdf-format:
17.pdf (0.5 MB)


Abstract

We study some linear programming relaxations for the Unsplittable Flow problem on trees (UFP-Tree). Inspired by results obtained by Chekuri, Ene, and Korula for Unsplittable Flow on paths (UFP-Path), we present a relaxation with polynomially many constraints that has an integrality gap bound of O(log n * min(log m, log n)) where n denotes the number of tasks and m denotes the number of edges in the tree. This matches the approximation guarantee of their combinatorial algorithm and is the first demonstration of an efficiently-solvable relaxation for UFP-Tree with a sub-linear integrality gap. The new constraints in our LP relaxation are just a few of the (exponentially many) rank constraints that can be added to strengthen the natural relaxation. A side effect of how we prove our upper bound is an efficient O(1)-approximation for solving the rank LP. We also show that our techniques can be used to prove integrality gap bounds for similar LP relaxations for packing demand-weighted subtrees of an edge-capacitated tree. On the other hand, we show that the inclusion of all rank constraints does not reduce the integrality gap for UFP-Tree to a constant. Specifically, we show the integrality gap is Omega(sqrt(log n)) even in cases where all tasks share a common endpoint. In contrast, intersecting instances of UFP-Path are known to have an integrality gap of O(1) even if just a few of the rank 1 constraints are included. We also observe that applying two rounds of the Lovász-Schrijver SDP procedure to the natural LP for UFP-Tree derives an SDP whose integrality gap is also O(log n * min(log m, log n)).

BibTeX - Entry

@InProceedings{friggstad_et_al:LIPIcs:2015:5307,
  author =	{Zachary Friggstad and Zhihan Gao},
  title =	{{On Linear Programming Relaxations for Unsplittable Flow in Trees}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{265--283},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Naveen Garg and Klaus Jansen and Anup Rao and Jos{\'e} D. P. Rolim},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2015/5307},
  URN =		{urn:nbn:de:0030-drops-53073},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.265},
  annote =	{Keywords: Unsplittable flow, Linear programming relaxation, Approximation algorithm}
}

Keywords: Unsplittable flow, Linear programming relaxation, Approximation algorithm
Seminar: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)
Issue Date: 2015
Date of publication: 28.07.2015


DROPS-Home | Fulltext Search | Imprint Published by LZI