License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2016.19
URN: urn:nbn:de:0030-drops-57202
URL: http://drops.dagstuhl.de/opus/volltexte/2016/5720/
Go to the corresponding LIPIcs Volume Portal


Blumensath, Achim ; Colcombet, Thomas ; Parys, Pawel

On a Fragment of AMSO and Tiling Systems

pdf-format:
20.pdf (0.6 MB)


Abstract

We prove that satisfiability over infinite words is decidable for a fragment of asymptotic monadic second-order logic. In this fragment we only allow formulae of the form "exists t forall s exists r: phi(r,s,t)", where phi does not use quantifiers over number variables, and variables r and s can be only used simultaneously, in subformulae of the form s < f(x) <= r.

BibTeX - Entry

@InProceedings{blumensath_et_al:LIPIcs:2016:5720,
  author =	{Achim Blumensath and Thomas Colcombet and Pawel Parys},
  title =	{{On a Fragment of AMSO and Tiling Systems}},
  booktitle =	{33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-001-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{47},
  editor =	{Nicolas Ollinger and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/5720},
  URN =		{urn:nbn:de:0030-drops-57202},
  doi =		{10.4230/LIPIcs.STACS.2016.19},
  annote =	{Keywords: monadic second-order logic, boundedness, tiling problems}
}

Keywords: monadic second-order logic, boundedness, tiling problems
Seminar: 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)
Issue Date: 2016
Date of publication: 16.02.2016


DROPS-Home | Fulltext Search | Imprint Published by LZI