License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2016.15
URN: urn:nbn:de:0030-drops-58236
URL: http://drops.dagstuhl.de/opus/volltexte/2016/5823/
Go to the corresponding LIPIcs Volume Portal


Filmus, Yuval ; Kindler, Guy ; Mossel, Elchanan ; Wimmer, Karl

Invariance Principle on the Slice

pdf-format:
2.pdf (0.4 MB)


Abstract

We prove a non-linear invariance principle for the slice. As applications, we prove versions of Majority is Stablest, Bourgain's tail theorem, and the Kindler-Safra theorem for the slice. From the latter we deduce a stability version of the t-intersecting Erdos-Ko-Rado theorem.

BibTeX - Entry

@InProceedings{filmus_et_al:LIPIcs:2016:5823,
  author =	{Yuval Filmus and Guy Kindler and Elchanan Mossel and Karl Wimmer},
  title =	{{Invariance Principle on the Slice}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{15:1--15:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Ran Raz},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/5823},
  URN =		{urn:nbn:de:0030-drops-58236},
  doi =		{10.4230/LIPIcs.CCC.2016.15},
  annote =	{Keywords: analysis of boolean functions, invariance principle, Johnson association scheme, the slice}
}

Keywords: analysis of boolean functions, invariance principle, Johnson association scheme, the slice
Seminar: 31st Conference on Computational Complexity (CCC 2016)
Issue Date: 2016
Date of publication: 18.05.2016


DROPS-Home | Fulltext Search | Imprint Published by LZI