License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2016.7
URN: urn:nbn:de:0030-drops-62737
URL: http://drops.dagstuhl.de/opus/volltexte/2016/6273/
Go to the corresponding LIPIcs Volume Portal


Chekuri, Chandra ; Ene, Alina ; Pilipczuk, Marcin

Constant Congestion Routing of Symmetric Demands in Planar Directed Graphs

pdf-format:
LIPIcs-ICALP-2016-7.pdf (0.6 MB)


Abstract

We study the problem of routing symmetric demand pairs in planar digraphs. The input consists of a directed planar graph G = (V, E) and a collection of k source-destination pairs M = {s_1t_1, ..., s_kt_k}. The goal is to maximize the number of pairs that are routed along disjoint paths. A pair s_it_i is routed in the symmetric setting if there is a directed path connecting s_i to t_i and a directed path connecting t_i to s_i. In this paper we obtain a randomized poly-logarithmic approximation with constant congestion for this problem in planar digraphs. The main technical contribution is to show that a planar digraph with directed treewidth h contains a constant congestion crossbar of size Omega(h/polylog(h)).

BibTeX - Entry

@InProceedings{chekuri_et_al:LIPIcs:2016:6273,
  author =	{Chandra Chekuri and Alina Ene and Marcin Pilipczuk},
  title =	{{Constant Congestion Routing of Symmetric Demands in Planar Directed Graphs}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Ioannis Chatzigiannakis and Michael Mitzenmacher and Yuval Rabani and Davide Sangiorgi},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/6273},
  URN =		{urn:nbn:de:0030-drops-62737},
  doi =		{10.4230/LIPIcs.ICALP.2016.7},
  annote =	{Keywords: Disjoint paths, symmetric demands, planar directed graph}
}

Keywords: Disjoint paths, symmetric demands, planar directed graph
Seminar: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)
Issue Date: 2016
Date of publication: 17.08.2016


DROPS-Home | Fulltext Search | Imprint Published by LZI