Abstract
We study novel variations of Voronoi games and associated random processes that we call Voronoi choice games. These games provide a rich framework for studying questions regarding the power of small numbers of choices in multiplayer, competitive scenarios, and they further lead to many interesting, nontrivial random processes that appear worthy of study.
As an example of the type of problem we study, suppose a group of n miners (or players) are staking land claims through the following process: each miner has m associated points independently and uniformly distributed on an underlying space (such as the unit circle, the unit square, or the unit torus), so the kth miner will have associated points p_{k1}, p_{k2}, ..., p_{km}. We generally here think of m as being a small constant, such as 2. Each miner chooses one of these points as the base point for their claim. Each miner obtains mining rights for the area of the square that is closest to their chosen base; that is, they obtain the Voronoi cell corresponding to their chosen point in the Voronoi diagram of the n chosen points. Each player's goal is simply to maximize the amount of land under their control. What can we say about the players’ strategy and the equilibria of such games?
In our main result, we derive bounds on the expected number of pure Nash equilibria for a variation of the 1dimensional game on the circle where a player owns the arc starting from their point and moving clockwise to the next point. This result uses interesting properties of random arc lengths on circles, and demonstrates the challenges in analyzing these kinds of problems. We also provide several other related results. In particular, for the 1dimensional game on the circle, we show that a pure Nash equilibrium always exists when each player owns the part of the circle nearest to their point, but it is NPhard to determine whether a pure Nash equilibrium exists in the variant when each player owns the arc starting from their point clockwise to the next point. This last result, in part, motivates our examination of the random setting.
BibTeX  Entry
@InProceedings{boppana_et_al:LIPIcs:2016:6302,
author = {Meena Boppana and Rani Hod and Michael Mitzenmacher and Tom Morgan},
title = {{Voronoi Choice Games}},
booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
pages = {23:123:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {9783959770132},
ISSN = {18688969},
year = {2016},
volume = {55},
editor = {Ioannis Chatzigiannakis and Michael Mitzenmacher and Yuval Rabani and Davide Sangiorgi},
publisher = {Schloss DagstuhlLeibnizZentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/6302},
URN = {urn:nbn:de:0030drops63022},
doi = {10.4230/LIPIcs.ICALP.2016.23},
annote = {Keywords: Voronoi games, correlated equilibria, power of two choices, Hotelling model}
}
Keywords: 

Voronoi games, correlated equilibria, power of two choices, Hotelling model 
Seminar: 

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) 
Issue Date: 

2016 
Date of publication: 

17.08.2016 