Multi-Party Protocols, Information Complexity and Privacy

Authors Iordanis Kerenidis, Adi Rosén, Florent Urrutia



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2016.57.pdf
  • Filesize: 0.5 MB
  • 16 pages

Document Identifiers

Author Details

Iordanis Kerenidis
Adi Rosén
Florent Urrutia

Cite AsGet BibTex

Iordanis Kerenidis, Adi Rosén, and Florent Urrutia. Multi-Party Protocols, Information Complexity and Privacy. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 57:1-57:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.MFCS.2016.57

Abstract

We introduce the new measure of Public Information Complexity (PIC), as a tool for the study of multi-party computation protocols, and of quantities such as their communication complexity, or the amount of randomness they require in the context of information-theoretic private computations. We are able to use this measure directly in the natural asynchronous message-passing peer-to-peer model and show a number of interesting properties and applications of our new notion: the Public Information Complexity is a lower bound on the Communication Complexity and an upper bound on the Information Complexity; the difference between the Public Information Complexity and the Information Complexity provides a lower bound on the amount of randomness used in a protocol; any communication protocol can be compressed to its Public Information Cost; an explicit calculation of the zero-error Public Information Complexity of the k-party, n-bit Parity function, where a player outputs the bit-wise parity of the inputs. The latter result establishes that the amount of randomness needed for a private protocol that computes this function is Omega(n).
Keywords
  • multi-party protocols
  • information theory
  • communication complexity
  • multi-party private computation (MPC)
  • randomness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Reuven Bar-Yehuda, Benny Chor, Eyal Kushilevitz, and Alon Orlitsky. Privacy, additional information and communication. IEEE Transactions on Information Theory, 39(6):1930-1943, 1993. URL: http://dx.doi.org/10.1109/18.265501.
  2. Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. In Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS'02, pages 209-218, Washington, DC, USA, 2002. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=645413.652164.
  3. Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive communication. In Proceedings of the 42nd ACM symposium on Theory of computing, STOC'10, pages 67-76, New York, NY, USA, 2010. ACM. URL: http://dx.doi.org/10.1145/1806689.1806701.
  4. Balthazar Bauer, Shay Moran, and Amir Yehudayoff. Internal compression of protocols to entropy. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40 of LIPIcs, pages 481-496. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://www.dagstuhl.de/dagpub/978-3-939897-89-7, URL: http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.481.
  5. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation. In Proceedings of the twentieth annual ACM symposium on Theory of computing, STOC'88, pages 1-10, New York, NY, USA, 1988. ACM. URL: http://dx.doi.org/10.1145/62212.62213.
  6. Mark Braverman. Interactive information complexity. In Proceedings of the 44th symposium on Theory of Computing, STOC'12, pages 505-524, New York, NY, USA, 2012. ACM. URL: http://dx.doi.org/10.1145/2213977.2214025.
  7. Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan. A tight bound for set disjointness in the message-passing model. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 668-677. IEEE Computer Society, 2013. URL: http://dx.doi.org/10.1109/FOCS.2013.77.
  8. Mark Braverman and Ankit Garg. Public vs private coin in bounded-round information. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 502-513. Springer, 2014. URL: http://dx.doi.org/10.1007/978-3-662-43948-7_42.
  9. Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From information to exact communication. In Proceedings of the 45th annual ACM symposium on Symposium on theory of computing, STOC'13, pages 151-160, New York, NY, USA, 2013. ACM. URL: http://dx.doi.org/10.1145/2488608.2488628.
  10. Mark Braverman and Rotem Oshman. On information complexity in the broadcast model. In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 355-364. ACM, 2015. URL: http://dx.doi.org/10.1145/2767386.2767425.
  11. Mark Braverman and Anup Rao. Information equals amortized communication. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS'11, pages 748-757, Washington, DC, USA, 2011. IEEE Computer Society. URL: http://dx.doi.org/10.1109/FOCS.2011.86.
  12. Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, Florian Speelman, and Nikolay K. Vereshchagin. Towards a reverse newman’s theorem in interactive information complexity. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 24-33. IEEE, 2013. URL: http://dx.doi.org/10.1109/CCC.2013.12.
  13. Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In In IEEE Conference on Computational Complexity, pages 107-117, 2003. Google Scholar
  14. Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informational complexity and the direct sum problem for simultaneous message complexity. In FOCS, pages 270-278, 2001. URL: http://dx.doi.org/10.1109/SFCS.2001.959901.
  15. Arkadev Chattopadhyay and Sagnik Mukhopadhyay. Tribes is hard in the message passing model. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 224-237. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://www.dagstuhl.de/dagpub/978-3-939897-78-1, URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2015.224.
  16. Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. Topology matters in communication. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 631-640, 2014. URL: http://dx.doi.org/10.1109/FOCS.2014.73.
  17. Arkadev Chattopadhyay and Atri Rudra. The range of topological effects on communication. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 540-551. Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-662-47666-6_43.
  18. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols. In Proceedings of the twentieth annual ACM symposium on Theory of computing, STOC'88, pages 11-19, New York, NY, USA, 1988. ACM. URL: http://dx.doi.org/10.1145/62212.62214.
  19. Danny Dolev and Tomás Feder. Multiparty communication complexity. In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 428-433. IEEE Computer Society, 1989. URL: http://dx.doi.org/10.1109/SFCS.1989.63514.
  20. Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communication complexity. SIAM J. Comput., 24(4):736-750, 1995. URL: http://dx.doi.org/10.1137/S0097539792235864.
  21. Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation (extended abstract). In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing, STOC'94, pages 554-563, New York, NY, USA, 1994. ACM. URL: http://dx.doi.org/10.1145/195058.195408.
  22. Lila Fontes, Rahul Jain, Iordanis Kerenidis, Sophie Laplante, Mathieu Laurière, and Jérémie Roland. Relative discrepancy does not separate information and communication complexity. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 506-516. Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-662-47672-7_41.
  23. Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their diameter in sublinear time. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1150-1162. SIAM, 2012. URL: http://dx.doi.org/10.1137/1.9781611973099.
  24. Anna Gál and Parikshit Gopalan. Lower bounds on streaming algorithms for approximating the length of the longest increasing subsequence. SIAM J. Comput., 39(8):3463-3479, 2010. URL: http://dx.doi.org/10.1137/090770801.
  25. Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and communication. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 176-185, 2014. URL: http://dx.doi.org/10.1109/FOCS.2014.27.
  26. Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of communication and external information. Electronic Colloquium on Computational Complexity (ECCC), 22:88, 2015. URL: http://eccc.hpi-web.de/report/2015/088.
  27. Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and communication for boolean functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 557-566. ACM, 2015. URL: http://dx.doi.org/10.1145/2746539.2746572.
  28. Andre Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party information complexity of the and-function and disjointness. In Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs, pages 505-516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1846.
  29. Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan. The communication complexity of correlation. IEEE Transactions on Information Theory, 56(1):438-449, 2010. URL: http://dx.doi.org/10.1109/TIT.2009.2034824.
  30. Rahul Jain. New strong direct product results in communication complexity. J. ACM, 62(3):20, 2015. URL: http://dx.doi.org/10.1145/2699432.
  31. Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in communication complexity via message compression. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata, Languages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes in Computer Science, pages 300-315. Springer, 2003. URL: http://dx.doi.org/10.1007/3-540-45061-0_26.
  32. T. S. Jayram. Hellinger strikes back: A note on the multi-party information complexity of and. In Proceedings of the 12th International Workshop and 13th International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX'09 / RANDOM'09, pages 562-573, Berlin, Heidelberg, 2009. Springer-Verlag. URL: http://dx.doi.org/10.1007/978-3-642-03685-9_42.
  33. Hartmut Klauck. A strong direct product theorem for disjointness. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 77-86. ACM, 2010. URL: http://dx.doi.org/10.1145/1806689.1806702.
  34. Alexander Kozachinskiy. Computer Science - Theory and Applications: 10th International Computer Science Symposium in Russia, CSR 2015, Listvyanka, Russia, July 13-17, 2015, Proceedings, chapter Making Randomness Public in Unbounded-Round Information Complexity, pages 296-309. Springer International Publishing, Cham, 2015. URL: http://dx.doi.org/10.1007/978-3-319-20297-6_19.
  35. Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997. Google Scholar
  36. Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and asymmetric communication complexity. In Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing, STOC'95, pages 103-111, New York, NY, USA, 1995. ACM. URL: http://dx.doi.org/10.1145/225058.225093.
  37. Denis Pankratov. Communication complexity and information complexity. PhD thesis, The university of Chicago, 2015. Google Scholar
  38. Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty communication complexity, made easy. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'12, pages 486-501. SIAM, 2012. URL: http://dl.acm.org/citation.cfm?id=2095116.2095158.
  39. Anup Rao and Makrand Sinha. Simplified separation of information and communication. Electronic Colloquium on Computational Complexity (ECCC), 22:57, 2015. URL: http://eccc.hpi-web.de/report/2015/057.
  40. Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of distributed approximation. CoRR, abs/1011.3049, 2010. URL: http://arxiv.org/abs/1011.3049.
  41. Ronen Shaltiel. Towards proving strong direct product theorems. Computational Complexity, 12(1-2):1-22, 2003. URL: http://dx.doi.org/10.1007/s00037-003-0175-x.
  42. C. E. Shannon. A mathematical theory of communication. Bell system technical journal, 27, 1948. Google Scholar
  43. David P. Woodruff and Qin Zhang. An optimal lower bound for distinct elements in the message passing model. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 718-733. SIAM, 2014. URL: http://dx.doi.org/10.1137/1.9781611973402.54.
  44. Andrew Chi-Chih Yao. Some complexity questions related to distributive computing(preliminary report). In Proceedings of the eleventh annual ACM symposium on Theory of computing, STOC'79, pages 209-213, New York, NY, USA, 1979. ACM. URL: http://dx.doi.org/10.1145/800135.804414.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail