License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.TQC.2016.4
URN: urn:nbn:de:0030-drops-66851
URL: http://drops.dagstuhl.de/opus/volltexte/2016/6685/
Go to the corresponding LIPIcs Volume Portal


Sikora, Jamie

Simple, Near-Optimal Quantum Protocols for Die-Rolling

pdf-format:
LIPIcs-TQC-2016-4.pdf (0.5 MB)


Abstract

Die-rolling is the cryptographic task where two mistrustful, remote parties wish to generate a random D-sided die-roll over a communication channel. Optimal quantum protocols for this task have been given by Aharon and Silman (New Journal of Physics, 2010) but are based on optimal weak coin-flipping protocols which are currently very complicated and not very well understood. In this paper, we first present very simple classical protocols for die-rolling which have decent (and sometimes optimal) security which is in stark contrast to coin-flipping, bit-commitment, oblivious transfer, and many other two-party cryptographic primitives. We also present quantum protocols based on the idea of integer-commitment, a generalization of bit-commitment, where one wishes to commit to an integer. We analyze these protocols using semidefinite programming and finally give protocols which are very close to Kitaev's lower bound for any D >= 3.

BibTeX - Entry

@InProceedings{sikora:LIPIcs:2016:6685,
  author =	{Jamie Sikora},
  title =	{{Simple, Near-Optimal Quantum Protocols for Die-Rolling}},
  booktitle =	{11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-019-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{61},
  editor =	{Anne Broadbent},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/6685},
  URN =		{urn:nbn:de:0030-drops-66851},
  doi =		{10.4230/LIPIcs.TQC.2016.4},
  annote =	{Keywords: Quantum Cryptography, Semidefinite Programming, Die-Rolling, Integer-Commitment}
}

Keywords: Quantum Cryptography, Semidefinite Programming, Die-Rolling, Integer-Commitment
Seminar: 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016)
Issue Date: 2016
Date of publication: 13.09.2016


DROPS-Home | Fulltext Search | Imprint Published by LZI