License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2017.128
URN: urn:nbn:de:0030-drops-74114
URL: http://drops.dagstuhl.de/opus/volltexte/2017/7411/
Go to the corresponding LIPIcs Volume Portal


Abrahamsen, Mikkel ; Alstrup, Stephen ; Holm, Stephen ; Knudsen, Mathias BŠk Tejs ; St÷ckel, Morten

Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

pdf-format:
LIPIcs-ICALP-2017-128.pdf (0.6 MB)


Abstract

A graph U is an induced universal graph for a family F of graphs if every graph in F is a vertex-induced subgraph of U. We give upper and lower bounds for the size of induced universal graphs for the family of graphs with n vertices of maximum degree D. Our new bounds improve several previous results except for the special cases where D is either near-constant or almost n/2. For constant even D Butler [Graphs and Combinatorics 2009] has shown O(n^(D/2)) and recently Alon and Nenadov [SODA 2017] showed the same bound for constant odd D. For constant D Butler also gave a matching lower bound. For generals graphs, which corresponds to D = n, Alon [Geometric and Functional Analysis, to appear] proved the existence of an induced universal graph with (1+o(1)) \cdot 2^((n-1)/2) vertices, leading to a smaller constant than in the previously best known bound of 16 * 2^(n/2) by Alstrup, Kaplan, Thorup, and Zwick [STOC 2015]. In this paper we give the following lower and upper bound of binom(floor(n/2))(floor(D/2)) * n^(-O(1)) and binom(floor(n/2))(floor(D/2)) * 2^(O(sqrt(D log D) * log(n/D))), respectively, where the upper bound is the main contribution. The proof that it is an induced universal graph relies on a randomized argument. We also give a deterministic upper bound of O(n^k / (k-1)!). These upper bounds are the best known when D <= n/2 - tilde-Omega(n^(3/4)) and either D is even and D = omega(1) or D is odd and D = omega(log n/log log n). In this range we improve asymptotically on the previous best known results by Butler [Graphs and Combinatorics 2009], Esperet, Arnaud and Ochem [IPL 2008], Adjiashvili and Rotbart [ICALP 2014], Alon and Nenadov [SODA 2017], and Alon [Geometric and Functional Analysis, to appear].

BibTeX - Entry

@InProceedings{abrahamsen_et_al:LIPIcs:2017:7411,
  author =	{Mikkel Abrahamsen and Stephen Alstrup and Stephen Holm and Mathias BŠk Tejs Knudsen and Morten St{\"o}ckel},
  title =	{{Near-Optimal Induced Universal Graphs for Bounded Degree Graphs}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{128:1--128:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Ioannis Chatzigiannakis and Piotr Indyk and Fabian Kuhn and Anca Muscholl},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7411},
  URN =		{urn:nbn:de:0030-drops-74114},
  doi =		{10.4230/LIPIcs.ICALP.2017.128},
  annote =	{Keywords: Adjacency labeling schemes, Bounded degree graphs, Induced universal graphs, Distributed computing}
}

Keywords: Adjacency labeling schemes, Bounded degree graphs, Induced universal graphs, Distributed computing
Seminar: 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)
Issue Date: 2017
Date of publication: 06.07.2017


DROPS-Home | Fulltext Search | Imprint Published by LZI