License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2017.24
URN: urn:nbn:de:0030-drops-75303
URL: http://drops.dagstuhl.de/opus/volltexte/2017/7530/
Go to the corresponding LIPIcs Volume Portal


Anshu, Anurag ; Ben-David, Shalev ; Garg, Ankit ; Jain, Rahul ; Kothari, Robin ; Lee, Troy

Separating Quantum Communication and Approximate Rank

pdf-format:
LIPIcs-CCC-2017-24.pdf (0.7 MB)


Abstract

One of the best lower bound methods for the quantum communication complexity of a function H (with or without shared entanglement) is the logarithm of the approximate rank of the communication matrix of H. This measure is essentially equivalent to the approximate gamma-2 norm and generalized discrepancy, and subsumes several other lower bounds. All known lower bounds on quantum communication complexity in the general unbounded-round model can be shown via the logarithm of approximate rank, and it was an open problem to give any separation at all between quantum communication complexity and the logarithm of the approximate rank. In this work we provide the first such separation: We exhibit a total function H with quantum communication complexity almost quadratically larger than the logarithm of its approximate rank. We construct H using the communication lookup function framework of Anshu et al. (FOCS 2016) based on the cheat sheet framework of Aaronson et al. (STOC 2016). From a starting function F, this framework defines a new function H=F_G. Our main technical result is a lower bound on the quantum communication complexity of F_G in terms of the discrepancy of F, which we do via quantum information theoretic arguments. We show the upper bound on the approximate rank of F_G by relating it to the Boolean circuit size of the starting function F.

BibTeX - Entry

@InProceedings{anshu_et_al:LIPIcs:2017:7530,
  author =	{Anurag Anshu and Shalev Ben-David and Ankit Garg and Rahul Jain and Robin Kothari and Troy Lee},
  title =	{{Separating Quantum Communication and Approximate Rank}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{24:1--24:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{Ryan O'Donnell},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2017/7530},
  URN =		{urn:nbn:de:0030-drops-75303},
  doi =		{10.4230/LIPIcs.CCC.2017.24},
  annote =	{Keywords: Communication Complexity, Quantum Computing, Lower Bounds, logrank, Quantum Information}
}

Keywords: Communication Complexity, Quantum Computing, Lower Bounds, logrank, Quantum Information
Seminar: 32nd Computational Complexity Conference (CCC 2017)
Issue Date: 2017
Date of publication: 21.07.2017


DROPS-Home | Fulltext Search | Imprint Published by LZI