License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2018.51
URN: urn:nbn:de:0030-drops-83427
URL: http://drops.dagstuhl.de/opus/volltexte/2018/8342/
Go to the corresponding LIPIcs Volume Portal


Bernstein, Aaron ; Däubel, Karl ; Disser, Yann ; Klimm, Max ; Mütze, Torsten ; Smolny, Frieder

Distance-Preserving Graph Contractions

pdf-format:
LIPIcs-ITCS-2018-51.pdf (0.6 MB)


Abstract

Compression and sparsification algorithms are frequently applied in a preprocessing step before analyzing or optimizing large networks/graphs. In this paper we propose and study a new framework contracting edges of a graph (merging vertices into super-vertices) with the goal of preserving pairwise distances as accurately as possible. Formally, given an edge-weighted graph, the contraction should guarantee that for any two vertices at distance d, the corresponding super-vertices remain at distance at least \varphi(d) in the contracted graph, where \varphi is a tolerance function bounding the permitted distance distortion. We present a comprehensive picture of the algorithmic complexity of the contraction problem for affine tolerance functions \varphi(x)=x/\alpha-\beta, where \alpha \geq 1 and \beta \geq 0 are arbitrary real-valued parameters. Specifically, we present polynomial-time algorithms for trees as well as hardness and inapproximability results for different graph classes, precisely separating easy and hard cases. Further we analyze the asymptotic behavior of the size of contractions, and find efficient algorithms to compute (non-optimal) contractions despite our hardness results.

BibTeX - Entry

@InProceedings{bernstein_et_al:LIPIcs:2018:8342,
  author =	{Aaron Bernstein and Karl D{\"a}ubel and Yann Disser and Max Klimm and Torsten M{\"u}tze and Frieder Smolny},
  title =	{{Distance-Preserving Graph Contractions}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{51:1--51:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Anna R. Karlin},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/8342},
  URN =		{urn:nbn:de:0030-drops-83427},
  doi =		{10.4230/LIPIcs.ITCS.2018.51},
  annote =	{Keywords: distance oracle, contraction, spanner}
}

Keywords: distance oracle, contraction, spanner
Seminar: 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)
Issue Date: 2018
Date of publication: 05.01.2018


DROPS-Home | Fulltext Search | Imprint Published by LZI