Go to the corresponding LIPIcs Volume Portal 
Edelsbrunner, Herbert ; Osang, Georg
pdfformat: 

@InProceedings{edelsbrunner_et_al:LIPIcs:2018:8747, author = {Herbert Edelsbrunner and Georg Osang}, title = {{The Multicover Persistence of Euclidean Balls}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {34:134:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {9783959770668}, ISSN = {18688969}, year = {2018}, volume = {99}, editor = {Bettina Speckmann and Csaba D. T{\'o}th}, publisher = {Schloss DagstuhlLeibnizZentrum fuer Informatik}, address = {Dagstuhl, Germany}, URL = {http://drops.dagstuhl.de/opus/volltexte/2018/8747}, URN = {urn:nbn:de:0030drops87471}, doi = {10.4230/LIPIcs.SoCG.2018.34}, annote = {Keywords: Delaunay mosaics, hyperplane arrangements, discrete Morse theory, zigzag modules, persistent homology} }
Keywords:  Delaunay mosaics, hyperplane arrangements, discrete Morse theory, zigzag modules, persistent homology  
Seminar:  34th International Symposium on Computational Geometry (SoCG 2018)  
Issue Date:  2018  
Date of publication:  24.05.2018 