Aperiodic Points in Z²-subshifts

Authors Anael Grandjean, Benjamin Hellouin de Menibus , Pascal Vanier



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2018.128.pdf
  • Filesize: 0.5 MB
  • 13 pages

Document Identifiers

Author Details

Anael Grandjean
  • Laboratoire d'Algorithmique, Complexité et Logique, Université Paris-Est Créteil, France
Benjamin Hellouin de Menibus
  • Laboratoire de Recherche en Informatique, Université Paris-Sud, CNRS, CentraleSupélec, Université Paris-Saclay, France
Pascal Vanier
  • Laboratoire d'Algorithmique, Complexité et Logique, Université Paris-Est Créteil, France

Cite AsGet BibTex

Anael Grandjean, Benjamin Hellouin de Menibus, and Pascal Vanier. Aperiodic Points in Z²-subshifts. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 128:1-128:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ICALP.2018.128

Abstract

We consider the structure of aperiodic points in Z^2-subshifts, and in particular the positions at which they fail to be periodic. We prove that if a Z^2-subshift contains points whose smallest period is arbitrarily large, then it contains an aperiodic point. This lets us characterise the computational difficulty of deciding if an Z^2-subshift of finite type contains an aperiodic point. Another consequence is that Z^2-subshifts with no aperiodic point have a very strong dynamical structure and are almost topologically conjugate to some Z-subshift. Finally, we use this result to characterize sets of possible slopes of periodicity for Z^3-subshifts of finite type.

Subject Classification

ACM Subject Classification
  • Theory of computation → Models of computation
Keywords
  • Subshifts of finite type
  • Wang tiles
  • periodicity
  • aperiodicity
  • computability
  • tilings

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alexis Ballier, Bruno Durand, and Emmanuel Jeandel. Structural aspects of tilings. In STACS 2008, 25th Annual Symposium on Theoretical Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings, pages 61-72, 2008. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1334.
  2. Alexis Ballier and Emmanuel Jeandel. Structuring multi-dimensional subshifts. CoRR, abs/1309.6289, 2013. URL: http://arxiv.org/abs/1309.6289.
  3. Robert Berger. The Undecidability of the Domino Problem. PhD thesis, Harvard University, 1964. Google Scholar
  4. M.-G. D. Birkhoff. Quelques théorèmes sur le mouvement des systèmes dynamiques. Bulletin de la SMF, 40:305-323, 1912. Google Scholar
  5. Maria De Carvalho. Entropy dimension of dynamical systems. Portugaliae Mathematica, 54:19-40, 1997. Google Scholar
  6. Bruno Durand. Tilings and Quasiperiodicity. Theoretical Computer Science, 221(1-2):61-75, jun 1999. URL: http://dx.doi.org/10.1016/S0304-3975(99)00027-4.
  7. Francesca Fiorenzi. Periodic configurations of subshifts on groups. International Journal of Algebra and Computation, 19(03):315-335, 2009. Google Scholar
  8. Yuri Gurevich and I Koryakov. Remarks on Berger’s paper on the domino problem. Siberian Math. Journal, pages 319-320, 1972. Google Scholar
  9. Emmanuel Jeandel and Pascal Vanier. Characterizations of periods of multidimensional shifts. Ergodic Theory and Dynamical Systems, 35(2):431-460, 2015. URL: http://dx.doi.org/10.1017/etds.2013.60.
  10. Jarkko Kari. Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences, 48(1):149-182, 1994. URL: http://dx.doi.org/10.1016/S0022-0000(05)80025-X.
  11. B.P. Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts. Universitext. Springer Berlin Heidelberg, 1997. Google Scholar
  12. Bruce Kitchens and Klaus Schmidt. Periodic points, decidability and Markov subgroups. In Berlin-Heidelberg-New York Springer Verlag, editor, Dynamical Systems, Proceeding of the Special Year, volume 1342 of Lecture Notes in Mathematics, pages 440-454, 1988. Google Scholar
  13. Douglas A. Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York, NY, USA, 1995. Google Scholar
  14. Tom Meyerovitch. Growth-type invariants for ℤ^d subshifts of finite type and arithmetical classes of real numbers. Inventiones mathematicae, 184(3):567-589, 2011. Google Scholar
  15. Tom Meyerovitch and Ville Salo. On pointwise periodicity in tilings, cellular automata and subshifts, 2017. URL: http://arxiv.org/abs/1703.10013.
  16. Etienne Moutot and Pascal Vanier. Slopes of 3-dimensional subshifts of finite type. In Computer Science - Theory and Applications - 13th International Computer Science Symposium in Russia, CSR 2018, Moscow, Russia, June 6-10, 2018, Proceedings, page to appear, 2018. Google Scholar
  17. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge, MA, USA, 1987. Google Scholar
  18. Hao Wang. Proving Theorems by Pattern Recognition I. Communications of the ACM, 3(4):220-234, apr 1960. URL: http://dx.doi.org/10.1145/367177.367224.
  19. Hao Wang. Notes on a class of tiling problems. Fundamenta Mathematicae, 82:295-305, 1975. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail