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Abstract. A well-studied problem in fault diagnosis is to identify the
set of all good processors in a given set {p1, p2, . . . , pn} of processors via
asking some processors pi to test whether processor pj is good or faulty.
Mathematically, the set C of the indices of good processors forms an
isolated clique in the graph with the edges E = {(i, j) : if you ask pi to
test pj then pi states that “pj is good”}; where C is an isolated clique
iff it holds for every i ∈ C and j 6= i that (i, j) ∈ E iff j ∈ C.
In the present work, the classical setting of fault diagnosis is modified
by no longer requiring that C contains at least n+1

2
of the n nodes of

the graph. Instead, one is given a lower bound a on the size of C and
the number n of nodes and one has to find a list of up to n/a candidates
containing all isolated cliques of size a or more where the number of
queries whether a given edge is in E is as small as possible.
It is shown that the number of queries necessary differs at most by n
for the case of directed and undirected graphs. Furthermore, for directed
graphs the lower bound n2/(2a−2)−3n and the upper bound 2n2/a are
established. For some constant values of a, better bounds are given. In
the case of parallel queries, the number of rounds is at least n/(a−1)−6
and at most O(log(a)n/a).
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1 The Starting Point: Diagnosing Faulty Processors

Fault diagnosis can be studied on an abstract level: Given a network of n proces-
sors p1, p2, . . . , pn, determine which of them are working correctly, that is, find
the good processors represented by the set

C = {i : the i-th processor pi is not faulty}.

The task has to be solved by asking processors pi to test whether pj is correct.
There are four possibilities what can happen if pi is requested to test pj . If pi
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and pj are both good, then pi verifies this by an adequate test and outputs 1
meaning “good”. If pi is good and pj is faulty, then pj will not pass the test
given by pi and pi will output 0 meaning “faulty”. If pi is faulty, then pi might
test pj or not and might output whatever it wants, but without loss of generality
one can identify illegal output with 0 and restrict the range of these outputs to
{0, 1} as well.

Note that the faulty processors may conspire to make testing as difficult as
possible. Hence lower bounds are proven by describing a strategy for the faulty
processors. In particular, every faulty processor would consider itself to be good
and so self-tests will always result in the output 1. Therefore, self-tests are not
used in this framework.

This general scenario of asymmetric fault-diagnosis has been studied by
Malek [9] while Chwa and Hakimi [7] imposed the restriction that pi and pj

judge each other in the same way: if pi says that pj is faulty, so does pj . The
classical approach is where the majority of the processors in not faulty. Then
one can determine the set of good processors with a short number of queries.
Blecher [4] determined this answer exactly and it does not only work in the sym-
metric model of Chwa and Hakimi [7] but also in the asymmetric of Malek [9].
In the following, b is an upper bound on the number of faulty processors among
n processors p1, p2, . . . , pn.

Classical Fault Diagnosis Problem. Given n processors p1, p2, . . . , pn and
an upper bound b on the number of faulty processors where b < n

2 , what is the
number m in dependence on n and b such that an algorithm can find with asking
for at most m tests the set C = {i : pi is good} of (indices of) good processors.

For the classical fault diagnosis problem, the number of queries turned out to be
the same in the asymmetric and symmetric model; Blecher [4] determined the
number of queries exactly.

Fact 1.1 [4]. If at most b out of n processors are faulty and if b < 1
2 ·n then one

can determine the set C of (indices of ) good processors with at most n + b − 1
many queries (= tests). This bound n + b− 1 is tight and cannot be improved.

This result was extended by considering the case where the tests are performed in
parallel: If i, j, i′, j′ are four different numbers in {1, 2, . . . , n} then the processor
pi can test pj and the processor pi′ can test pj′ without any interference. So it is
natural to ask, how many rounds are needed for fault diagnosis and the answer
was the following.

Fact 1.2 [2, 3, 8]. If the absolute majority of processors is good, one can deter-
mine the set C of (indices of ) good processors with at least 5 and at most 10
rounds of parallel tests such that every processor is involved in at most one test
per round either as a testing or as a tested processor.

The starting point of the present work is the question what happens if the
condition that the majority of the processors is good is dropped. Of course, one
cannot determine the set C of good processors itself as the faulty processors can
fool out the tester by just claiming that every good processor would be faulty and
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every faulty one would be good. So one would consider the following modified
fault diagnosis problem where again b is an upper bound on the number of faulty
processors.

Modified Fault Diagnosis Problem. What are the numbers m, d in depen-
dence on an upper bound b on the number of faulty processors and the number
n of processors p1, p2, . . . , pn such that an algorithm can find with asking for at
most m tests a list of d candidate-sets containing also the set C = {i : pi is
good} of good processors and that there is no such algorithm with d−1 in place
of d.

The modified fault diagnosis problem turns out to be equivalent to the graph
theoretic problem of finding isolated cliques.

Definition 1.3. Given a graph G = ({1, 2, . . . , n}, E), a set C of nodes is called
an isolated clique iff for every node i ∈ C and every node j ∈ {1, 2, . . . , n} − {i}
it holds that (i, j) ∈ E iff j ∈ C. Now the following numbers to measure the
complexity of finding a list of all isolated cliques are defined.

1. D(a, n) is the minimal number of queries needed to determine a list of up
to bn

a c many members containing all the isolated cliques of size at least a
where G ranges over all directed graphs of at least n nodes and having at
least one isolated clique. (The D stands for Directed.)

2. U(a, n) is the minimal number of queries needed to determine a list of up
to bn

a c many members containing all the isolated cliques of size at least a
where G ranges over all undirected graphs of at least n nodes and having at
least one isolated clique. (The U stands for Undirected.)

3. PU(a, n) is the minimal number of rounds of queries needed to determine
a list of up to bn

a c many members containing all the isolated cliques of size
at least a where G ranges over all undirected graphs of at least n nodes and
having at least one isolated clique. (The PU stands for Parallel Undirected.)

Then D(a, n) is the directed graph approach of Malek [9] and U(a, n) is the
undirected graph approach of Chwa and Hakimi [7]. PU(a, n) is the correspond-
ing model for parallel queries. Since there are no nontrivial results for parallel
directed queries which cannot derived from the other cases easily, this notion is
left out in this paper.

Note that the definitions of the above notions are robust in the sense that
one could also include the case where G does not have any isolated clique. The
reason is that one can just stop the algorithm without any further output before
asking more queries than permitted or outputting more candidates than per-
mitted as one knows that in this case there is no isolated clique. Furthermore,
one can list a candidate but cannot establish that this candidate is indeed an
isolated clique as this additional procedure would require at least a(a−1)

2 many
queries. Therefore also illegal candidates are permitted in the list output as long
as these candidates do not break the given bound on the cardinality of the list.
The next proposition gives just a formal verification for the approach to use
graph-theoretic tools for fault diagnosis [10, 11].
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Proposition 1.4. Given a Modified Fault Diagnosis Problem where a is the
minimum number of good processors and n is the number of all processors, the
maximal number m of required tests is exactly D(a, n) and the size d of the
output list is bn

a c.
Proof. Given an algorithm for the Modified Fault Diagnosis Problem with
parameters n and a and always outputting a list of the minimum number of
hypotheses necessary, let C ⊆ {1, 2, . . . , n} be that set of good processors con-
taining at least a nodes on which the algorithm has it worst case performance
and let R be a run of the algorithm leeding to these m queries. In this run R it
is assumed that no query is done twice – a processor answering the same query
twice with a different output would give away that it is faulty while repeating the
last answer would not reveal any new knowledge to the algorithm. Thus one can
assume that every query in the protocol R is asked exactly once. The algorithm
needs m queries for the run R and the list of sets output by the algorithm has
at most n

a many members. Now one puts into E all pairs (i, j) such that either
the run R of the algorithm requested pi to test pj and received the answer 1
or that i, j are both in C and i 6= j. Then C is an isolated clique of the graph
({1, 2, . . . , n}, E) and the algorithm could be looked upon as an algorithm to
find all isolated cliques. As any node in an isolated clique C uniquely determines
C, any two isolated cliques are disjoint and so there can be at most n

a of them,
thus one can request that the algorithm outputs at most n

a many candidates.
On the other hand, one can for every graph ({1, 2, . . . , n}, E) run any algo-

rithm for the Modified Fault Diagnosis Problem by supplying a 1 iff the requested
test (pi, pj) is represented by an edge (i, j) ∈ E and by replying a 0 otherwise.
As any isolated clique of size a can represent the set of good processors, the
algorithm has to output a candidate for every isolated clique.

Let d = bn
a c, that is, d is the maximal integer with d · a ≤ n. On one hand,

the graph where (i, j) ∈ E iff i ≡ j modulo d partitions the set {1, 2, . . . , n} into
d cliques of at least a nodes. Each of these isolated cliques can represent the set
of good processors. Thus any algorithm needs to output at least d candidates of
for the set of good processors, namely these d cliques. On the other hand, if one
asks all queries one will recover the graph completely and each candidate for the
set of good processors corresponds to an isolated clique of the graph. Since these
cliques are disjoint, there are at most d of them having the size a or more. Thus
the calculated value d is the optimal possible size of the output list.

Summary of Main Results. In Theorem 2.1 a close connection between the
cases for directed and undirected graphs is shown, namely U(a, n) ≤ D(a, n) ≤
U(a, n)+n. Therefore the subsequent results address only the case of undirected
graphs.

In Theorems 3.1 and 3.2 it is shown that 1
2(a−1)n

2−3n ≤ U(a, n) ≤ 2
an2 for all

a, n with 2 ≤ a ≤ n. These bounds are quite close, the remaining multiplicative
gap is approximately 4 a

a−1 .
For constant values of a the bounds on U(a, n) can be tightened. Theorem 4.1

gives for U(2, n) the precise number dn(n−2)
2 e.

Finally, for the case of parallel queries, the lower bound of over n
a−1 −6 many
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rounds follows directly from Theorem 3.2 while unfortunately no upper bound
better than PU(a, n) ∈ O(n log a

a ) was obtained.

2 Isolated Cliques of Undirected Graphs

In the following it is shown that the values of D(a, n) and U(a, n) for directed
and undirected graphs are very near to each other. Therefore, further research
will then deal with U(a, n) instead of D(a, n).

Theorem 2.1. U(a, n) ≤ D(a, n) ≤ U(a, n) + n.

Proof. The first relation “≤” is straight forward. So only the second one has
to be proven. The idea is to simulate a program M for undirected graphs and to
supply its queries with answers sufficiently near to the situation in the given di-
rected graph (D, {1, 2, . . . , n}). In particular, any isolated clique of D of size a or
more should also be consistent with all information fed into M . So the simulat-
ing algorithm constructs together with the simulation a graph ({1, 2, . . . , n}, E)
where for an edge is fixed to be in E only iff M requests to know whether this
edge is in E or not. Without loss of generality, M never asks the same query
twice. Now it is shown how to construct an algorithm N for the directed case
which mainly simulates M .

For bookkeeping, N has an equivalence relation ≡ and a set T . One can
always unite equivalence classes and put nodes into T . For every set C which
is a subset of some equivalence class of ≡ at some time, one knows that ei-
ther C is a subset of an isolated clique or C is disjoint to all isolated cliques
of ({1, 2, . . . , n}, D). Furthermore T is also disjoint to all isolated cliques of
({1, 2, . . . , n}, D).

– At the beginning of the simulation of M , N defines that i ≡ j iff i = j and
T = ∅.

– Whenever during the simulation, M queries whether (i, j) ∈ E, then N
answers as described below, updates ≡, updates T and then continues the
simulation until M terminates. After termination of the simulation, N copy-
cats the output of M without change.

The query whether (i, j) ∈ E is answered according to the first below case to
apply.

1. i ∈ T or j ∈ T : The answer is “NO” and no updating is done.
2. i ≡ j: The answer is “YES” and no updating is done.
3. (i, j) /∈ D: The answer is “NO” and no updating is done.
4. (i, j) ∈ D ∧ (j, i) /∈ D: The answer is “NO” and T is updated by putting all

nodes i′ with i′ ≡ i into T .
5. (i, j) ∈ D ∧ (j, i) ∈ D: The answer is “YES” and one updates ≡ by uniting

the equivalence classes of i, j: after the update i′ ≡ j′ if before the update
either i′ ≡ i ∧ j′ ≡ j or i′ ≡ j ∧ j′ ≡ i or i′ ≡ j′.
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Note that a query of M is translated into two queries of N if and only if it is
answered by cases 4 and 5. Otherwise it is translated into at most one query.
In both cases, the number of equivalence classes outside T goes down by one: in
case 4, two equivalence classes are united, in case 5, one is moved into T . Since
there are at the beginning n equivalence classes, there can be at most n double
queries and D(a, n) ≤ U(a, n) + n. So it remains to show the correctness of the
algorithm.

Let E be a set of undirected edges such that (i, j) ∈ E iff either i, j belong to
the same isolated clique of ({1, 2, . . . , n}, D) or (i, j) was queried by the simulated
machine M in the above algorithm and received the answer “YES”. It is shown
that the following properties hold for every isolated clique C of ({1, 2, . . . , n}, D):

– If i′ ∈ C and i′ ≡ j′ at some stage then j′ ∈ C: This can be seen by induction
over the running time of the algorithm. So assume that it holds up to the
time when i′, j′ become equivalent. There are i, j such that i′ ≡ i and j′ ≡ j
before the update and (i, j), (j, i) ∈ D. By induction hypothesis, i ∈ C. Since
C is a isolated clique, also j ∈ C. Again by induction hypothesis, j′ ∈ C.

– If i′ ∈ T at some stage than i′ /∈ C. At the stage where i′ goes into T there
are i, j such that i ≡ i′ and (i, j) ∈ D ∧ (j, i) /∈ D. So if an isolated clique
contains i it also contains j; but then there are members of it which are not
connected in the directed graph, a contradiction. Hence i /∈ C and by the
previous item, also i′ /∈ C.

– C is an isolated clique of ({1, 2, . . . , n}, E): Let i ∈ C. One has to show that
j ∈ C ⇔ (i, j) ∈ E. The direction (⇒) holds already by the definition of E.
The direction (⇐) follows from the fact that a “YES” is given according to
cases 2 and 5 where in case 2 i ≡ j holds already before giving the answer
and in case 5 i ≡ j holds after giving the answer. Since i ≡ j can at any
time only hold for j ∈ C, (i, j) ∈ E only for j ∈ C.

It remains to show that the answers used in the simulation of M are consistent
with the graph ({1, 2, . . . , n}, E). Since M does never query an edge twice, in-
consistencies cannot come from supplying different answers to the same query.
Without loss of generality, M also never queries first (i, j) and then (j, i). If
M receives the answer “YES” then (i, j) ∈ E by definition. So one has only to
check that (i, j) /∈ E for the case that M receives the answer “NO”. If i, j do
not belong to the same isolated clique of D then that answer is correct. If i, j
belong to an isolated clique of D then this clique is disjoint to T during the
whole time of the algorithm. So the “NO” cannot come from cases 1,3,4 and the
used in the simulation of M is the correct answer “YES”. Thus while simulating
the algorithm M , all answers used are consistent with E and M outputs a list
containing all isolated cliques of ({1, 2, . . . , n}, E) which have at least size a. Ev-
ery clique C of ({1, 2, . . . , n}, D) having at least a nodes is in this list and thus
N is correct.

Note that the given algorithm runs in time polynomial in n whenever the simu-
lated algorithm M has the same property. The above result can be used to get
a non-trivial bound for the number of inspected edges in the case of a directed
graph.
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Proposition 2.2. U(1, n) = 1
2n(n− 1). D(1, n) ≤ 1

2n(n + 1).

Proof. Clearly if one knows all edges of a graph, one can compute all isolated
cliques of the graph. On the other hand, if an algorithm to find the isolated
cliques of the graph ({1, 2, . . . , n}, D) always receives the negative answer (i, j) /∈
D to its queries, then it has at the end to conjecture every singleton {i} as a
possible isolated clique and also every pair {i, j} where it has not asked whether
(i, j) ∈ D or not. The resulting number of cliques is n plus the number of non-
asked edges, but as only n hypotheses are permitted, each edge must have been
queried. The bound for D(1, n) is then a direct corollary from Theorem 2.1.

3 General Bounds for U(a,n)

This section gives general lower and upper bounds for U(a, n) which match up
to a multiplicative constant. In the next section, the upper bound is improved
for fixed values of a and exact bounds are given for a = 2.

Theorem 3.1. U(a, n) ≤ 3
2·an2.

Proof. Let ({1, 2, . . . , n}, E) be the given graph and let d = bn
a c. The idea

of the algorithm is the following: One computes a series of sets D0, D1, . . . , Dn

such that each set Dj represents members of different possible isolated cliques.
In parallel, one builds for each i a set Fi which contains candidates of nodes in
the same isolated clique as i. For each new node j one either finds some i ∈ Dj−1

which is connected to j. Then one puts j into Fi and defines Dj = Dj−1. Or
one has a new candidate for an isolated clique and defines Dj = Dj−1 ∪ {j}
unless some exception handling is necessary because Dj would be too big. The
exception handling avoids that Dj has more than d elements. It is done such that
Gj is the accumulation of all nodes covered by the exception handling and it
takes always either 0 or d+1 new nodes into Gj ; in the second case each isolated
clique contributes at most one node to Gj − Gj−1. Based on this fact one can
use cardinality arguments to show that Gj will not contain all elements of any
isolated clique of a or more elements. All variables are directly known completely
in the stage where they are constructed, only j is put into some Fi in round j
of step (2) so that the Fi are constructed during the whole step (2). Thus the
variable ui,j considers only ` ≤ j when the value depends on the question which
of the ` are in Fi. Now the algorithm is presented formally.

(1) Let D0 = ∅ and G0 = ∅.
(2) For j = 1, 2, . . . , n do the following substeps:

• Ask for all i ∈ Dj−1 whether (i, j) ∈ E; this is void if Dj−1 = ∅.
• Let j ∈ Fi for the minimal i ∈ Dj−1 ∪ {j} such that either (i, j) ∈ E or

j = i; let j /∈ Fi for all other i.
• If j /∈ Fj then let Uj = ∅, Dj = Dj−1, Gj = Gj−1.
• If j ∈ Fj and |Dj−1| < d then let Dj = Dj−1 ∪ {j}, Gj = Gj−1 and

Uj = ∅.
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• If j ∈ Fj and |Dj−1| = d then let ui,j = {max{` ∈ Fi : ` ≤ j ∧ ` /∈ Gj−1}
for all i ∈ Dj−1 ∪ {j}}, Gj = Gj−1 ∪ {ui,j : i ∈ Dj−1 ∪ {j}} and
Dj = Dj−1 −Gj .

(3) For every i ∈ Dn, let Ci be the union of all Fj where either j = i or
j ∈ Gn ∧ j ∈ Fj ∧ j < i ∧ (j, i) ∈ E where Ci is obtained by asking whether
(j, i) ∈ E for those j satisfying j ∈ Gn ∧ j ∈ Fj ∧ j < i.

First the bound on the number of queries is verified. It is easy to see by induction
that |Dj | ≤ d for all j. Thus, in the j-th round of step (2), there are at most d
queries. This gives d ·n queries in total for step (2). In step (3), there are up to d
elements i in Dn and for each Ci is computed by making up to |Gn| queries. So
the overall number of queries is bounded by (n + |Gn|) · d. But this bound can
be improved to (n + 1

2 · |Gn|) · d as shown in the next paragraph. This number
is bounded by 3

2·an2 since d ≤ n
a and |Gn| ≤ n.

The idea is that whenever one puts some elements into Gn, one can argue
that based on some conditions, certain queries will not be made later so that
one can substract some number from the rough upper bound (n + |Gn|) · d.
As a consequence one can conclude that the algorithm makes never more than
(n + 1

2 |Gn|) · d queries. If at stage j it holds that Gj 6= Gj−1 then let ej be the
number of uk,j in Gj−Gj−1 with k < uk,j . When constructing Ci in step (3), no
query of the form (i, uk,j) will be made since uk,j ∈ Fk for some k different from
uk,j . So one saves d · ej queries which can be subtracted from the bound |Gn| ·d.
Furthermore, |Dj | = d−ej . So one knows that Gk will have at most d−ej +k−j
elements for k = j, j+1, . . . , j+ej−k. In the case that Gj 6= Gn one can conclude
that for the computation of Dj+1, . . . , Dd+1−ej

at least 1
2 (d− ej)(d +1− ej) are

saved compared to the estimated bound since j + (d + 1 − ej) ≤ n. In the case
that Gj = Gn one can make use of the fact that when computing D1, . . . , Dd,
actually at least 1

2d(d + 1) queries are saved compared to the actual bound
estimated for these queries. So one can conclude that for each j ∈ {1, 2, . . . , n}
with Gj 6= Gj−1 there are at least d · ej + 1

2 (d − ej)(d + 1 − ej) queries made
less than estimated. For any of the possible values of ej , this number is bounded
from below by 1

2d(d + 1). Furthermore, there are 1
d+1 |Gn| such j and one has

that the overall number of queries is at most

n · d + |Gn| · d− 1
d+1 |Gn| · 1

2d(d + 1) = (n + 1
2 |Gn|) · d.

It remains to show that the algorithm is correct, that is, that every isolated
clique of size a or larger is covered by the conjectures Ci with i ∈ Dn.

So let C be an isolated clique with |C| ≥ a. Note that whenever a set Fi

intersects C then Fi ⊆ C: For every j ∈ Fi, (i, j) ∈ E and thus i ∈ C ⇔ j ∈ C.
Furthermore, one can show by induction that |C ∩Dj | ≤ 1 for all j: This clearly
holds for j = 0 and for all j > 0 where |C ∩ Dj−1| = 0. So assume that j > 0
and {i} = Dj−1 ∩ C. Note that Dj ⊆ Dj−1 ∪ {j}, thus only the case j ∈ C has
to be considered. In this case (i, j) ∈ E while (i′, j) /∈ E for all i′ ∈ Dj−1 − {i}
by induction hypothesis. So the algorithm decides that j ∈ Fi and Dj = Dj−1,
in particular |C ∩Dj | ≤ 1 again.

Whenever Gj ⊃ Gj−1 then |Dj−1 ∪ {j}| = d + 1 and j ∈ Fj . So either C
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does not intersect Dj−1 or j /∈ C, thus |C ∩ (Dj−1 ∪ {j})| ≤ 1. It follows that
only one of the ui,j ∈ Gj − Gj−1 is in C. So, for all j, either Gj = Gj−1 or
|Gj−Gj−1| = d+1∧|C∩ (Gj−Gj−1)| ≤ 1. It follows that |C∩Gn| · (d+1) ≤ n.
Since d is the unique integer with a · d ≤ n < a · (d + 1), |C ∩ Gn| < a and
C 6⊆ Gn.

Note that for all j ∈ {1, 2, . . . , n}, {j} ⊆ Dj−Dj−1, Fj ⊆ {j, j+1, . . . , n} and
Dj ∩Gj = ∅. If there is a j with i ∈ Dj−1−Dj then i /∈ Dk−1 for k > j and thus
Fi ⊆ {i, i + 1, . . . , j}. Furthermore, i = ui,j = max{ell ∈ Fi : ` ≤ j ∧ ` /∈ Gj−1}
and Fi ⊆ Gj . If i /∈ Dj for all j then Fi = ∅.

Since C 6⊆ Gn, there is an Fi which intersects C. It follows that Fi 6⊆ Gn,
i ∈ Dn and Fi ⊆ C. If i′ ∈ Dn then Fi′ is disjoint to C. So a j /∈ Gi is in C iff
it is in Fi. Furthermore, all j > i with j ∈ C are also in Fi, so it is sufficient to
query whether (j, i) ∈ E for those j which are in Gn and which satisfy j < i.
The resulting Ci is equal to C and the algorithm outputs a list containing all
isolated cliques having at least a elements.

Note that the upper bound on the number of queries done by this algorithm is
almost optimal if one takes its behaviour on all graphs and not only on those
graphs which have a sufficiently large clique. Taking a graph with n nodes and
no edges such that d ≡ n modulo d+1, the algorithm makes d

2 (n− 1) queries in
step (2) and (n− d) · d queries in step (3) resulting in 3

2n · d− d2 − d
2 queries; so

any reasonably improved upper bound on the number of queries has to exploit
the fact that there is a clique of size a and might need some slight modifications
of the algorithm.

Consider the case where d is given and a depends linearly on n through the
equation n = d · a. Then the upper bound on the queries is also linear in n and
equals to 3·d

2 · n. In particular, the classical case is covered by letting d = 2.
For d = 2, the upper bound on the number of queries is 3 · n which is roughly
Blecher’s bound doubled. But this bound also covers the case where the number
of good and faulty processors can be equal. If at least a third of the processors is
good and n is a multiple of 3, then the upper bound provided by the algorithm
is 9

2 · n.

As the relation U(a, n) ≤ 3
2·an2 shows that the upper bound is quadratic for

fixed a, one might ask for the lower bound. The next theorem shows that lower
and upper bound differ only by a factor 3 when n is sufficiently large compared
to a. Furthermore, the bound is only slightly larger if more theories are supplied,
thus it does make sense to restrict the search for the minimum necessary quantity
of bn

a c many theories.

Theorem 3.2. Let a ≥ 2. One needs at least (n−a)(n−2a)
2(a−1) − b queries to find b

sets such that every isolated clique is among these sets. In particular, U(a, n) ≥
1

2(a−1)n
2 − 3n.

Proof. Assume by way of contradiction that one would have an algorithm
finding the desired b sets with b (n−a)(n−2a)

a−1 − bc many queries. Now one assumes
that the algorithm is running for a graph with a single isolated clique C and that
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G does not contain any further edge except the ones within C. The clique C is
chosen adversary to the algorithm, so one assumes that the algorithm during the
running time does not hit any edge of C and thus receives for every query the
answer 0.

So let E′ now be the set of all edges not queried. One has to show that
E′ contains at least b + 1 cliques of size a and that thus the algorithm might
fail to list the correct isolated clique C of G. Therefore, one looks at the b
candidate cliques output by the algorithm and for each clique C ′ conjectured by
the algorithm one removes one edge contained in C ′ from E′ unless C ′ and E′

do not have an edge in common. The resulting set E′′ contains at least

n(n−1)
2 − (n−a)(n−2a)

a−1

edges. This an upper bound on the number n(n−1)
2 −ta−1(n)+1 given by Bollobás

where Bollobás [5, VI.1,Theorem 1.1] showed that such graphs having so many
edges and n nodes have at least one clique of size a or more. So one can choose
a clique C of the graph ({1, 2, . . . , n}, E′′). This clique C has at least a nodes
and the corresponding graph G consisting of the isolated clique C is then the
adversary graph on which the given algorithm fails.

4 Explicit Bounds for U(a,n) with a = 2, 3, ..., 9

In the following one might ask what bounds one can obtain for fixed values for
a where n remains unspecified. It is shown that the upper bound 2

an2 is not
optimal for certain a and explicit better bounds are given. In the case of a = 2
the exact number of queries needed to find the isolated cliques of size 2 can be
determined.

Theorem 4.1. U(2, n) = dn(n−2)
2 e.

Proof. For U(2, n) ≥ dn(n−2)
2 e, simulate any correct algorithm M by answer-

ing “(i, j) /∈ E” to every query asked until M stops. Then for every query (i, j)
where it had not been asked whether (i, j) ∈ E, one considers the corresponding
isolated clique {i, j} of the given graph. Each graph containing exactly the edge
(i, j) and no other one would be consistent with the data supplied to M . As M

outputs at most bn
2 c many hypotheses, one knows that at least dn(n−2)

2 e queries
have been asked.

For the converse direction, let ({1, 2, . . . , n}, E) be the given graph. Now one
asks whether (i, j) ∈ E for all i, j where either i is even and j ≥ i+1 or i is odd
and j ≥ i + 2. These are dn(n−2)

2 e many queries. Now one shows that there are
at most bn

2 c many isolated cliques of size 2 or more which are consistent with
the answers so one can output these cliques without violating the bound on the
number of hypotheses.

So assume that C,C ′ are two cliques of size 2 or more which are consistent
with all answers supplied. Furthermore, assume that C,C ′ have a common node
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and that there is a node which is in one but not in both cliques. So let i, j be
these nodes with i < j, {i, j} ⊆ C and {i, j} intersecting but not being a subset
of C ′. The query whether (i, j) ∈ E cannot have been asked as it is true for C
and false for C ′, thus j = i + 1 and i is odd. As the cardinality of C ′ is at least
2, there is some node k ∈ C ′ − {i, j}. Both queries whether (i, k), (j, k) ∈ E (in
case i, j < k) or whether (k, i), (k, j) ∈ E (in case k < i, j) have been asked. As
C contains i, j, both answers have to be the same. As C ′ contains k and one
of the elements i, j, one of the answers must be true and the other one false.
It follows that, whatever answers had been supplied, only one of the candidates
C,C ′ can be consistent with these answers.

So one can derive that whenever C,C ′ are both candidates for isolated cliques
of size 2 and more which are consistent with all answers to queries of the algo-
rithm, then C and C ′ have to be disjoint. So there can be at most bn

2 c candidates
consistent with the answers to all queries and U(2, n) ≤ dn(n−2)

2 e.

Although one cannot verify with few queries, whether a given candidate for
an isolated clique is really one, one might at least try to get more evidence.
This might need more queries and so the following notion U∗(a, n) captures this
concept. The motivation for this notion is, that it is easier to iterate procedures
searching the isolated cliques if the additional constraints (B) and (C) are met.

Definition 4.2. The notion U∗(a, n) is the amount of queries necessary to
come up with the set of all candidates C1, C2, . . . , Ce the three conditions below
hold where E′ be the set of edges for which the algorithm asked whether they
are in E or not.

(A) Every set Ci has at least a members and e ≤ n
a .

(B) For every i ∈ {1, 2, . . . , e}, the subgraph containing the nodes of Ci and
those edges of E′ which connect two nodes in Ci is connected.

(C) For every distinct i, j ∈ {1, 2, . . . , e}, there are nodes i′ ∈ Ci and j′ ∈ Cj

such that the edge from i′ to j′ is in E′.

Note that the conditions (B) and (C) enforce that all candidates for cliques
produced by the algorithm are disjoint.

As obviously U(a, n) ≤ U∗(a, n), the below upper bounds are stated for U∗(a, n)
and apply to U(a, n), too.

Theorem 4.3. U∗(a + b− 1, n + m) ≤ U∗(a, n) + U∗(b, m) + m·n
max{a,b} .

Proof. Given a graph ({1, 2, . . . , n + m}, E), one first uses the subroutines
needing U∗(a, n)+U∗(b, m) many queries in order to find candidates A1, . . . , Ac

and B1, . . . , Bd for isolated cliques of size a and b, respectively, in the subgraphs
containing the edges of E within the sets {1, 2, . . . , n} and {n+1, n+2, . . . , n+m},
respectively. Note that c ≤ n

a and d ≤ m
b . Let x1, x2, . . . , xc and y1, y2, . . . , ye be

members of these candidates and let A0 and B0 be the sets of those elements of
{1, 2, . . . , n} and {n + 1, n + 2, . . . , n + m} which are not contained in any of the
candidates for cliques. Now one asks the following queries:
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– Is (xi, yj) ∈ E for i ∈ {1, 2, . . . , c} and j ∈ {1, 2, . . . , d};
– Is (xi, y) ∈ E for i ∈ {1, 2, . . . , c} and y ∈ B0;
– Is (x, yj) ∈ E for x ∈ A0 and j ∈ {1, 2, . . . , d}.

Assume now that a ≤ b. The first two groups of queries have at most cm queries,
the third group |A0|mb queries as d ≤ m

b . Using that c ≤ 1
a (n− |A0|) and 1

b ≤
1
a

one obtains that the number of queries has the upper bound 1
a (n − |A0|)m +

1
b |A0|m ≤ mn

a . In the case that a > b one can similarly show that the number of
queries is bounded by mn

b . Together with the U∗(a, n) + U(m,n)b many queries
from the built in subroutines, this gives the bound on the number of queries in
the statement of the theorem.

If C is an isolated clique containing at least a + b − 1 nodes, than either
C ∩ {1, 2, . . . , n} has at least a or C ∩ {n + 1, n + 2, . . . , n + m} has at least b
nodes. So at least one of these sets is an isolated clique in the subgraph having
at least a or b nodes, respectively. It follows that C restricted to one of the
subgraphs is in the candidates A1, A2, . . . , Ac or B1, B2, . . . , Bd and so shows up
in the list of candidates. Condition (A) is satisfied.

It remains to show conditions (B) and (C). Say that C ∩ {1, 2, . . . , n} = A1.
Then the algorithm establishes whether one of the Bk with k = 1, 2, . . . , d belongs
to C. If so, C = A1∪Bk and the set of edges queried by the algorithm is connected
when restricted to A1 or Bk. If not, C ⊆ A1 ∩B0 and as all queries (x1, y) with
y ∈ B0 had been made, again the queries asked by the algorithm inside C form
a connected subgraph and (B) holds.

To verify (C), fix now that C extends A1. By induction hypothesis, C ∩
{1, 2, . . . , n} = A1 and it holds that for each clique C ′ containing one of the sets
A2, . . . , Ac there is an edge having a node in A1 and one in C ′ which had been
queried by the algorithm. So consider any further clique C ′ containing some set
Bk. As the query (x1, y) had been asked explicitly, again (C) is satisfied for
C ′.

Corollary 4.4. U∗(2a, n) ≤ U∗(a, γn)+U∗(a+1, (1−γ)n)+ γ(1−γ)
a n2 whenever

γn is an integer and U∗(2a− 1, n) ≤ 2 ·U∗(a, 1
2 · n) + 1

4an2 whenever n is even.

Proposition 4.5. U∗(bc + 1, n) ≤ cU∗(b + 1, 1
cn) + c−1

2(b+1)cn2 whenever n is a
multiple of c.

Proof. The proof is parallel to that of Theorem 4.3. One divides the graphs into
c groups of n

c nodes and establishes on them all candidates for isolated cliques
of size b + 1. Having those, one has now to combine every candidate of a clique
with nodes from the other groups which gives the bound of (c−1)c

2 · 1
b+1 · (

n
c )2

many further queries. By multiplying these terms, one has the number of queries
in the Proposition.

Now one can use these bounds in order to compute explicit bounds for the
constant a = 3, 4, 5, . . . , 9. Note that U∗(2, n) = n(n−1)

2 , which is almost but
not exactly the value of U(2, n). The lower bounds come from Theorem 3.2, the
upper bound is obtained by using Corollary 4.4 iteratively. In order to make
computations a bit easier and to ignore the effects of iterated rounding, the
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below table gives the values for those n which are multiples of 23 · 32 · 17. These
n can be divided whenever a problem is split into subproblems as for example
the algorithm for U∗(6, n) solves the subproblems belonging to U∗(3, 4

9n) and
U∗(4, 5

9n) first and recombines them later.

This and similar results can be applied to get the following explicit values for
small constants a. Note that the condition that n is a multiple of 1224 only
applies in order to reduce the number of case distinctions in notation and proofs.

Theorem 4.6. Let n be a multiple of 1224. Then

0.2500n2 − 3n ≤ U∗(3, n) ≤ 2 · U∗(2, 1
2
n) + 1

8
n2 ≤ 3

8
n2 ≤ 0.3750n2,

0.1666n2 − 3n ≤ U∗(4, n) ≤ U∗(2, 1
3
n) + U∗(3, 2

3
n) + 1

9
n2 ≤ 1

3
n2 ≤ 0.3334n2,

0.1250n2 − 3n ≤ U∗(5, n) ≤ 2 · U∗(3, 1
2
n) + 1

12
n2 ≤ 13

48
n2 ≤ 0.2709n2,

0.1000n2 − 3n ≤ U∗(6, n) ≤ U∗(3, 4
9
n) + U∗(4, 5

9
n) + 20

243
n2 ≤ 7

27
n2 ≤ 0.2593n2,

0.0833n2 − 3n ≤ U∗(7, n) ≤ 2 · U∗(4, 1
2
n) + 1

16
n2 ≤ 11

48
n2 ≤ 0.2292n2,

0.0714n2 − 3n ≤ U∗(8, n) ≤ U∗(4, 7
17

n) + U∗(5, 10
17

n) + 35
578

n2≤ 731
3468

n2 ≤ 0.2108n2,

0.0625n2 − 3n ≤ U∗(9, n) ≤ 2 · U∗(5, 1
2
n2) + 1

20
n2 ≤ 89

480
n2 ≤ 0.1855n2.

In particular ran2 − 3n ≤ U(a, n) ≤ qan2 where ran2 − 3n and qan2 are the
entries in the first and last column, respectively, for a = 3, 4, . . . , 9.

Note that Proposition 4.5 gives for a = 4 by the relation U∗(4, n) ≤ 3·U∗(2, 1
3n)+

1
6n2 ≤ 1

3n2 the same upper bound as the application of Corollary 4.4, but for
a = 5, 6, 7, 8, 9, the method above turned out to be superior than the one given by
Proposition 4.5. On the other hand, Theorem 3.1 gives better bounds for a ≥ 6,
so that this general algorithm beats the solutions optimized for these specific
values of a; the corresponding upper bound 3

2a · n
2 is approximately 02500 · n2,

0.2143 · n2, 0.1875 · n2, 0.1667 · n2 for a = 6, 7, 8, 9, respectively. The main value
of the techniques in the present section is that they other than Theorem 3.1 can
be parallelized as outlined in the next section.

5 Parallel Queries

For the case that a > n
2 , it has been shown that one can parallelize the search

for a isolated clique (there is at most one) in the sense that in every round one is
permitted to ask as many questions as long no two of these questions deal with
edges having a node in common. It had been shown that one can then find the
isolated clique with a constant number of rounds [2, 3, 8]. In the following, it is
shown to which extent the previous results can be transferred to the model of
parallel queries.

Theorem 5.1. If ({1, 2, . . . , n}, E) is a directed graph, then the number of
rounds to find all isolated cliques of size a or more is at most 2 · PU(a, n).
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Proof. Let F = {(i, j) : (i, j) ∈ E ∧ (j, i) ∈ E}. Note that if C is an isolated
clique with respect to E then C is also an isolated clique with respect to F . As
one can simulate all queries to E by two queries to F involving the same nodes,
one can simulate an m-round algorithm for F by an 2m-round algorithm for the
graph with edges E and afterwards copycat the output.

Therefore it is sufficient to consider the case of undirected graphs only. The lower
bound for U(a, n) from Theorem 3.2 translates into a lower bound for PU(a, n)
as every query involves two nodes and thus at most n

2 many queries can be done
in parallel.

Corollary 5.2. PU(a, n) ≥ 1
a−1n− 6.

The authors did not find a way to turn the algorithm from Theorem 3.1 into a
parallel one. Nevertheless, there is a parallel and iterated version of the approach
from Theorem 4.3 giving the following result.

Theorem 5.3. PU(a, n) ≤ 6 log(a)+2
a n.

The original setting was for directed graphs, but as one can ask both directions
in two levels after each other, one obtains in general, that the number of rounds
for the directed graphs is at most the double of the number of rounds for the
undirected graphs. So, in the following, only the numbers of rounds for undirected
graphs are analyzed.

The constant number of rounds was of course only possible for the case that
a ≥ γn for some constant γ as Theorem 3.2 states, that at least 1

2(a−1)n
2 − 3n

queries are necessary, that implies, at least n
a−1 −6 rounds. The algorithm given

in Theorem 3.1 is extremely non-parallel. Therefore, it is more convenient to try
to adapt the results from Section 4 in order to get upper bounds on the number
of rounds required.

Definition 5.4. Let PU(a, n) be the number of rounds necessary to find
all isolated cliques of size a or more in a graph of n nodes. Let PU∗(a, n) be
the corresponding number if in addition the conditions (A), (B) and (C) from
Definition 4.2.

Proposition 5.5. PU∗(2a + 1, n) ≤ PU∗(a + 1, 1
2n) + 2 + 2n

a+1 if n is even.

Proof. The algorithm is the same as in Theorem 4.3, so the main question is
how to make the queries parallel. As the two subproblems PU∗(a + 1, 1

2n) work
on disjoint sets of nodes, they do not interfere with each other. Combining the
results, one should note that every query involves on at least one side a connected
candidate clique containing at least a+1 nodes. As it does not matter which node
is taken, one can parallelize the queries in the three steps of the combination as
follows.

Recall that E is the set of edges, A1, . . . , Ac are the candidate cliques from
one side and B1, . . . , Bd those from the other sides. The nodes in A0 and B0 do
not belong to any candidate clique, all candidate cliques are disjoint and have
at least size a + 1. The queries are the following.
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– Is (xi, yj) ∈ E for i ∈ {1, 2, . . . , c}, j ∈ {1, 2, . . . , d};
– Is (xi, y) ∈ E for i ∈ {1, 2, . . . , c} and y ∈ B0;
– Is (x, yj) ∈ E for x ∈ A0 and j ∈ {1, 2, . . . , d}.

In Theorem 4.3 the xi are the minimum of Ai and yj the minimum of Bj . When
parallelizing the queries, this is a bad choice. Indeed it does not matter which
xi ∈ Ai and yj ∈ Bj are taken, son one distributes the taken queries such that
every node receives more or less the average load. Therefore the queries of the
first group can be done in 1 + max{c,d}

a+1 many rounds. The queries of the second
group need at most 1 + max{c, n

a+1} many rounds as one can access in each
round for each Ai in parallel a + 1 members of B0 as long as these members are
not overcrowded by several Ai, Ai′ trying to access them. The third group needs
at most 1 + max{d, n

a+1} many rounds and can be carried out in parallel to the
second group, as the second group deals with edges between nodes in some Ai,
i ≥ 1 and B0 while the third group with edges between nodes A0 and some Bj ,
j ≥ 1. As c(a + 1) ≤ n and d(a + 1) ≤ n, one gets the upper bound 2 + 2n

a+1 .

Theorem 5.6. PU(a, n) ≤ 4 log(a)+2
a n if n is a multiple of 2log(a)+1.

Proof. Assume that 2b +1 ≤ a ≤ 2b+1 and therefore b ≤ log(a)+1. The smaller
a is, the more rounds are needed, so one can without loss of generality consider
the case that a = 2b + 1. Note that Proposition 5.5 implies that

PU∗(2b−k + 1, 2−kn) ≤ PU∗(2b−k−1 + 1, 2−k−1n) + 21−kn/(2b−k + 1)

for k = 0, 1, 2, . . . , b−1 and using that 21−k/(2b−k +1) is below 21−b one obtains
that

PU∗(2b + 1, n) ≤ PU∗(2, 2−bn) + b · n · 21−b.

As PU∗(2, 2−bn) is 21−b one obtains the relation

PU(a, n) ≤ 21−b · (1 + b) · n

and by 21−b ≤ 4
a and 1+ b ≤ log(a)+2 one obtains the bounds in the statement

of the Theorem.

So PU(a, n) ∈ O( log(a)
a n). It is an open problem whether one can find the isolated

cliques even in O( 1
an) rounds.
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