Henselian Local Rings: Around a Work in Progress

Mariemi Alonso1, Henri Lombardi2, Hervé Perdry3

1 Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Algebra.
\texttt{m_alonso@mat.ucm.es}

2 Université de Franche-Comté, U. F. R. des Sciences et Techniques, Département de Mathématiques pures et appliqués.
\texttt{henri.lombardi@univ-fcomte.fr}

3 Università di Pisa, Dipartimento di Matematica L. Tonelli.
\texttt{perdry@mail.dm.unipi.it}

Abstract. An introduction to the theme of local rings and Henselian local rings is given through numerous examples. We outline an elementary and effective construction of the Henselization of a local ring and an effective proof of about a classical result in Henselian local rings. This paper announces a joint work of the three authors.

Keywords. Local rings, Henselian local rings.

Introduction

This paper gives an short insight of a work in progress [1] on a constructive and elementary treatment of the theory of local rings. We will sketch here the construction of the Henselization of a local ring. A similar construction for valued fields can be found in [3], [4], [5].

An excellent reference for the topic of Henselian local rings is the book by Jean-Pierre Lafon, [2], which we used a lot in our work.

1 Rings and Local Rings

Here we give some basic definitions. In the whole paper, all the rings are commutative with a unity.

1.1 Radicals

Definition 1. The Jacobson radical of a ring A is

$$\mathcal{J}_A = \{x \in A : \forall y \in A \ 1 + x \cdot y \in A^\times\}.$$

In classical mathematics, \mathcal{J}_A is the intersection of all maximal ideals of A.

Dagstuhl Seminar Proceedings 05021
Mathematics, Algorithms, Proofs
http://drops.dagstuhl.de/opus/volltexte/2006/437
Definition 2. A ring A is local if, and only if,
\[\forall x \in A, \ x \in A^\times \text{ or } (1 + x) \in A^\times. \]

We have the following classical result:

Lemma 1. If A is a local ring, then $J_A = A \setminus A^\times$, and it is the unique maximal ideal of A. We denote it by \mathfrak{m}_A or simply by m.

Definition 3. The residue field of local ring A with maximal ideal m is $k = A/\mathfrak{m}$. If k is discrete (i.e., we can decide effectively whether $x \in k$ is zero or not, or equivalently if some $x \in A$ is in m or not), A will be called residually discrete.

The field \mathbb{R} of real number is not a discrete field, but it verifies $\forall x \in \mathbb{R}, x \in \mathbb{R}^\times$ or $1 + x \in \mathbb{R}^\times$. Now the ring A defined by $A = S^{-1}\mathbb{R}[T]$, where S is the set of polynomials g with $g(0) \in \mathbb{R}^\times$, is indeed a local ring: the statement $\forall x \in A, x \in A^\times$ or $(1 + x) \in A^\times$ holds. The residue field of A is \mathbb{R}, and the quotient map $A \rightarrow \mathbb{R}$ is given by $f/g \mapsto f(0)/g(0)$. This provides an example of local ring A which is not residually discrete.

In this article, from now on, we are going to deal with residually discrete local rings.

1.2 Examples of local rings

Our first example is a recipe to build a local ring from any ring with a prime ideal.

1. Localization in a prime ideal Let R be a commutative ring, and \mathfrak{P} a prime ideal in R. Then $S = R \setminus \mathfrak{P}$ is a multiplicative part of R: if $x, y \in S$, then $x \cdot y \in S$.

We fit the set $R \times S$ with the following laws:

\[
\begin{align*}
(r, s) + (r', s') &= (rs' + r's, ss') \\
(r, s) \times (r', s') &= (rr', ss') \\
(r, s) \sim (r', s') &\iff \exists s'' : (rs' - r's)s'' = 0
\end{align*}
\]

The relation \sim is an equivalence relation, compatible with the two laws $+$ and \times; the quotient $R \times S/\sim$ fitted with the corresponding quotient laws is a local ring, denoted by $R_{\mathfrak{P}}$, the localization of R in \mathfrak{P}.

There is a canonical map from R to $R_{\mathfrak{P}}$, given by $x \in R \mapsto \overline{(x, 1)} \in R_{\mathfrak{P}}$ (where $\overline{(r, s)}$ is the class of (r, s) modulo \sim). The maximal ideal of $R_{\mathfrak{P}}$ is the image of \mathfrak{P} under this map.

In the special case where R is an domain and F is its fraction field, then $R_{\mathfrak{P}}$ is a subring of F:

\[R_{\mathfrak{P}} = S^{-1}R = \left\{ \frac{r}{s} : r \in R, s \notin \mathfrak{P} \right\}. \]

Now we use the recipe to give various examples.
2. Example Let \(p \in \mathbb{Z} \) be a prime number. The localization of \(\mathbb{Z} \) in \(\langle p \rangle \), denoted by \(\mathbb{Z}_{(p)} \), is the ring

\[
\mathbb{Z}_{(p)} = \left\{ \frac{a}{b} : b \not\equiv 0 \mod p \right\}
\]

of elements of \(\mathbb{Q} \) which are “defined modulo \(p \)”. The maximum ideal of \(\mathbb{Z}_{(p)} \) is the ideal of the fractions \(a/b \) with \(b \not\equiv 0 \mod p \) and \(a \equiv 0 \mod b \), the residue field is \(\mathbb{F}_p = \mathbb{Z}/p \cdot \mathbb{Z} \), and the quotient map \(\mathbb{Z}_{(p)} \to \mathbb{F}_p \) is the evaluation modulo \(p \).

3. Other example Let \(\mathfrak{P} \) the ideal of \(\mathbb{Q}[X] \) generated by \(X \), \(\mathfrak{P} = \langle X \rangle \). The localization of \(\mathbb{Q}[X] \) in \(\mathfrak{P} \) is the ring

\[
A = \mathbb{Q}[X]_{\mathfrak{P}} = \left\{ \frac{f}{g} : g(0) \neq 0 \right\} \subset \mathbb{Q}(X).
\]

It is a local ring (and even a valuation ring), with maximal ideal

\[
\mathfrak{m} = \left\{ \frac{f}{g} : f(0) = 0 \right\}.
\]

The residue field of \(A \) is \(\mathbb{Q} \), and the quotient map \(A \to \mathbb{Q} = A/\mathfrak{m} \) is given by the evaluation in \(X = 0 \).

4. Power Series The ring of power series \(\mathbb{Q}[[X]] \) is the ring of formal series

\[
\mathbb{Q}[[X]] = \left\{ a_0 + a_1 X + a_2 \cdot X^2 + \cdots : k \in \mathbb{Z}, \forall i, a_i \in \mathbb{Q} \right\}
\]

with the classical and natural addition and multiplication laws on it. It is a local ring; its maximal ideal is generated by \(X \); it is the set of series \(\sum a_i \cdot X^i \) with constant term \(a_0 = 0 \). Its residue field is \(\mathbb{Q} \) and the quotient map \(\mathbb{Q}[[X]] \to \mathbb{Q} \) is the evaluation in \(X = 0 \).

There is a natural injection \(A = \mathbb{Q}[X]_{(X)} \to \mathbb{Q}[[X]] \), which is a morphism of local rings (it sends the maximal ideal of \(A \) in the maximal ideal of \(\mathbb{Q}[[X]] \)).

Remark We are not being very fair with these examples. The experienced reader will remark that these are very special local rings, namely valuation rings. In these rings, given two element \(x \) or \(y \), either \(x \) divides \(y \) or \(y \) divides \(x \).

5. An example with two variables Let \(A \) be the ring \(\mathbb{Q}[X,Y] \) localized in the prime ideal \(\langle X, Y \rangle \). The \(A \) is a local ring but is not a valuation ring. Its residue field is \(\mathbb{Q} \).

Very similarly to the ring \(A = \mathbb{Q}[X]_{(X)} \) of example 3, this ring can be embedded in the bigger local ring \(\mathbb{Q}[[X,Y]] \), the ring of formal series in two variables.

6. An example from algebraic geometry Let \(f(X,Y) \in \mathbb{Q}[X,Y] \), with \(f(0,0) = 0 \). Let \(R = \mathbb{Q}[X,Y]/\langle f \rangle \), the ring of polynomial functions on the curve \(f(X,Y) = 0 \). Let \(\mathfrak{P} \) be the ideal of \(R \) generated by \(x \) and \(y \) (mod \(f \)). It is the prime ideal of functions which are 0 on the point \((0,0) \).
The local ring \(A = \mathbb{R}_p \) is the ring of rational functions on the curve which are defined on the point \((0, 0)\). The residue field of \(A \) is \(\mathbb{Q} \), and the quotient map \(A \rightarrow \mathbb{Q} \) is given by the evaluation in \((0, 0)\).

This local ring reflects local properties of the curve at the point \((0, 0)\) (one may localize in an other point). One very well-known property is that this local ring is a valuation ring if, and only if, the point \((0, 0)\) is regular.

This gives a wide class of local rings which are not valuation rings. If we consider for example the singular cubic \(Y^2 = X^3 + X^2 \) drawn here, which is singular in \((0, 0)\), the ring \(A \) constructed as above is a local ring which is not a valuation ring.

\[\text{2 Henselian Local Rings} \]

2.1 Definition and examples

Definition 4. Let \(A \) be a local ring with maximal ideal \(m \). We say that \(A \) is Henselian if all monic polynomial \(f(X) = X^n + \cdots + a_1 \cdot X + a_0 \in A[X] \) with \(a_1 \in A^\times \) and \(a_0 \in m \) has a root in \(m \).

This property is known under the name of Hensel’s Lemma: a Henselian local ring is a local ring in which Hensel’s Lemma holds.

Examples The ring \(A = \mathbb{Q}[X]_{(X)} \) is not Henselian, but the ring \(\mathbb{Q}[[X]] \), which is a complete discrete valuation ring, is Henselian.

More precisely, \(\mathbb{Q}[[X]] \) is complete for the absolute value \(|a| = 2^{-v(a)} \) where \(v \left(\sum a_i \cdot X^i \right) = \min\{i : a_i \neq 0\} \); if \(f(X) \) verifies the condition of the definition, it is easy to verify that the sequence defined by \(u_0 = 0 \) and \(u_{n+1} = u_n - f(u_n)/f'(u_n) \) is Cauchy and converges to an \(\alpha \in m \) which is a root of \(f \).

2.2 A simple property of Henselian local rings

In this section, \(A \) will be a Henselian residually discrete local ring with maximal ideal \(m \) and residue field \(k \). We denote by \(a \in A \mapsto \pi \in k \) the quotient map, and extend it to a map \(A[X] \rightarrow k[X] \) by setting \(\sum_i a_i \cdot X^i = \sum \pi_i \cdot X^i \).
We are going to show that a polynomial \(f(X) = a_n \cdot X^n + \cdots + a_1 \cdot X + a_0 \) with \(a_1 \in A^\times \) and \(a_0 \in m \) has a (unique) root in \(m \); in the definition 4, one may drop the hypothesis “\(f \) is monic”. It seems clear that this kind of result should be the consequence of some variable change; and it is indeed the case — but it seems that this variable change is absent from the classical literature, where this result is derived from a general result of structure of \(\acute{e}tale \) algebras on a Henselian local ring.

Here is the the change of variable we propose. The proof is elementary, nevertheless it is a bit tedious.

Lemma 2. Let \(f(X) = a_n \cdot X_n + \cdots + a_1 \cdot X + a_0 \), with \(a_1 \in A^\times \) and \(a_0 \in m \). There exists a monic polynomial \(g(X) \in A[X], g(X) = X^n + \cdots + b_1 \cdot X + b_0 \), with \(b_1 \in A^\times \) and \(b_0 \in m \), such that the following equality holds in \(A(X) \):

\[
-a_0 \cdot g(X) = (X + 1)^n \cdot f\left(\frac{-a_0 \cdot a_1^{-1}}{X + 1}\right).
\]

Proof. Let \(h(X) = (X + 1)^n \cdot f\left(\frac{-a_0 \cdot a_1^{-1}}{X + 1}\right) \in A(X) \). It is easy to check that \(h(X) \) is in fact a polynomial of degree \(n \). We write \(h(X) = c_n \cdot X^n + \cdots + c_1 \cdot X + c_0 \).

We have

\[
c_{n-k} = a_0 \cdot \left(\binom{n}{k} + \sum_{j=1}^{k} (-1)^j \cdot a_j \cdot a_0^{j-1} \cdot a_1^{-j} \cdot \binom{n}{j}\right) = a_0 \cdot b_{n-k},
\]

where \(b_{n-k} \) is in \(A \). Of course we let \(g(X) = \sum b_i \cdot X^i \), and the desired equality is verified.

Now it is easy to check that \(c_n = a_0 \), so that \(b_n = 1 \). We have \(c_0 = h(0) \), hence

\[
c_0 = f\left(\frac{-a_0}{a_1}\right) = a_0^2 \cdot \left(a_n \cdot \frac{a_0}{a_1}\right)^{n-2} + a_{n-1} \cdot \left(\frac{a_0}{a_1}\right)^{n-3} + \cdots + a_2 = a_0^2 \cdot u,
\]

with \(u \in A \), so that \(b_0 = a_0 \cdot u \in m \).

Writing

\[
h'(x) = n \cdot (X + 1)^{n-1} f\left(\frac{-a_0 \cdot a_1^{-1}}{X + 1}\right) + a_0 \cdot a_1^{-1} \cdot (X + 1)^{n-2} f'\left(\frac{-a_0 \cdot a_1^{-1}}{X + 1}\right),
\]

we get \(c_1 = h'(0) = n \cdot a_0^2 \cdot u + a_0 \cdot a_1^{-1} \cdot f'(a_0 \cdot a_1^{-1}). \) We have \(f'(a_0 \cdot a_1^{-1}) - a_1 \in m \), so that \(b_1 = n \cdot a_0 \cdot u + (1 + \mu) \) with \(\mu \in m \), and \(b_1 \in A^\times \).

It is now easy to conclude.

Proposition 1 (Hensel’s Lemma II). Let \(f(X) = a_n \cdot X_n + \cdots + a_1 \cdot X + a_0 \), with \(a_1 \in A^\times \) and \(a_0 \in m \). Then \(f \) has a (unique) root in \(m \).
Proof. Let \(g(X) \) be the polynomial associated to \(f \) by the previous lemma, and \(\alpha \in m \) its root. Then \((1 + \alpha) \in A^\times \); we put \(\beta = \frac{-a_0 \cdot a_1^{-1}}{\alpha + 1} \), and we have
\[-a_0 \cdot g(\alpha) = (\alpha + 1)^n \cdot f(\beta), \]
so that \(f(\beta) = 0 \).

And the proof of the following proposition is very easy; it is left to the reader.

Proposition 2. Let \(f(X) = a_n \cdot X^n + \cdots + a_0 \in A[X] \) such that \(\overline{f}(X) \in k[X] \) has a simple root \(a \in k \). Then there exists a (unique) root \(\alpha \in A \) of \(f \), such that \(\overline{\alpha} = a \).

3 Henselization of a local ring

3.1 The Henselization; some examples

Remember the example of the non-Henselian ring \(A = QX \) embedded in the Henselian local ring \(Q[[X]] \); let \(B \) be the ring of elements of \(Q[[X]] \) which are root of a polynomial with coefficients in \(A \).

It can be checked that \(B \) is a Henselian local ring, and moreover that if \(C \) is a Henselian local ring and \(\phi : A \to C \) is a morphism of local rings (ie, it sends the maximal ideal of \(A \) in the maximal ideal of \(C \)), then there exists a unique morphism of local rings \(\phi : B \to C \) such that the following diagram commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{\phi} & C \\
\downarrow & & \downarrow \\
B & \xrightarrow{\psi} & C
\end{array}
\]

In other words, \(\phi \), which is defined on \(A \), can be extended to the whole ring \(B \). We say that \(B \) is a Henselization of \(A \).

More generally, this property defines the Henselization of any local ring \(A \); a consequence is that the Henselization of \(A \) is unique up to unique isomorphism.

An other example Now turn to our example from algebraic geometry: let \(R \) be the ring \(Q[X, Y]/\langle X^3 + X^2 - Y^2 \rangle = Q[x, y] \) \((x \text{ and } y \text{ are the class of } X \text{ and } Y \text{ modulo } X^3 + X^2 - Y^2)\) and \(A = R_{(x,y)} \) be its localization in \((0, 0)\). It is a local ring which is not a valuation ring (this reflects the fact that \((0, 0)\) is a singular point of the cubic).

The Henselization reflects other properties of the curve in \((0, 0)\). Locally, this curve looks like the cross of two lines; nevertheless \(A \) is not isomorphic to \(B = (Q[U, V]/\langle UV \rangle)_{(u,v)} \), the local ring of the curve \(UV = 0 \) in \((0, 0)\). But we have a good surprise: its Henselization \(A_h \) is isomorphic to \(B_h \) (which can be seen as a subring of \(Q[[u, v]] \), similarly to what happens in the previous example). The Henselization “separates” the two branches. We are going to sketch the construction of homomorphism between these two rings.

Let \(\alpha \in m_{A_h} \subset A_h \) be the root of \(T^2 + 2 \cdot T - x \), whose existence is predicted by Hensel’s Lemma. Hence \(1 + \alpha \) is a unit, and \((1 + \alpha)^2 = 1 + x \).
Let $\phi_0 : B \longrightarrow A^h$ the morphism defined by
\[
\phi_0 : \begin{align*}
B & \longrightarrow A^h \\
u & \longmapsto y + x \cdot (1 + \alpha) \\
v & \longmapsto y - x \cdot (1 + \alpha)
\end{align*}
\]
One can check that ϕ_0 is a well defined morphism of local rings; note in particular that $\phi_0(u) \cdot \phi_0(v) = y^2 - x^2(1 + x) = 0 = \phi_0(uv)$, which is a key point. Now ϕ_0 can be extended to a morphism $\phi : B^h \longrightarrow A^h$.

We are going to define the inverse morphism. Let $\beta \in m_{B^h}$ the root of $(u - v) \cdot T^3 + (3 \cdot (u - v) + 2) \cdot T^2 + (3 \cdot (u - v) + 4) \cdot T + (u - v)$ whose existence is predicted by Hensel’s Lemma (the non-monic case); we define $\psi_0 : A \longrightarrow B^h$ by
\[
\psi_0 : \begin{align*}
A & \longrightarrow B^h \\
x & \longmapsto (u - v) \cdot (1 + \beta)/2 \\
y & \longmapsto (u + v)/2
\end{align*}
\]
Note again that $\psi_0(x)^3 + \psi_0(x)^2 = \psi_0(y)^2$, which is an important point to show that the application is well defined (this time the verification is a bit longer, but using a lot $uv = 0$ this can be done in a pretty reasonable time) (of course the equation defining β was build from $[\frac{1}{2}(u - v) \cdot (1 + T)]^3 + [\frac{1}{2}(u - v) \cdot (1 + T)]^2 = \frac{1}{2}(u^2 + v^2)$).

Now ψ_0 can be extended to a morphism $\psi : A^h \longrightarrow B^h$. Checking that ψ and ϕ are inverse of each other is again a tedious but easy computation.

3.2 Construction of the Henselization

In this section, A is again a residually discrete local ring with maximal ideal m. We give only a sketch of the construction.

Definition 5. Let $f(X) = X^n + \cdots + a_1 \cdot X + a_0 \in A[X]$ a monic polynomial with $a_1 \in A^\times$ and $a_0 \in m$. Then we denote by A_f the ring defined as follows: if $B = A[x] = A[X]/\langle f(X) \rangle$ (where x is the class of X in the quotient ring), let $S \subseteq B$ be the multiplicative part of B defined by
\[
S = \{g(x) \in B : g(X) \in A[X], g(0) \in A^\times\};
\]
then A_f is B localized in S, that is $A_f = S^{-1} \cdot B$.

We fix a polynomial $f(X) \in A[X]$ such as in the above definition.

Lemma 3. The canonical map $A \longrightarrow A_f$ is an injection. The ring A_f is a residually discrete local ring. Its maximal ideal is $m \cdot A_f$.

Proof. See [1].

As a consequence, we can identify A with its image in A_f, and write $A \subseteq A_f$. The elements of A_f can be written formally as fractions $r(x)/s(x)$ with $r, s \in A[X]$ and $s(0) \in A^\times$.
Lemma 4. Let B, m_B be a local ring and $\phi : A \rightarrow B$ a morphism of local rings (i.e., $\phi(m) \subseteq m_B$). Let $f(X) = X^n + \cdots + a_1 \cdot X + a_0 \in A[X]$ be a monic polynomial with $a_1 \in A^\times$ and $a_0 \in m$.

If $\phi(f) = X^n + \cdots + \phi(a_1) \cdot X + \phi(a_0) \in B[X]$ has a root μ in m_B, then there exists a unique morphism of local rings $\psi : A_f \rightarrow B$ such that the following diagram commutes:

$$
\begin{array}{ccc}
A, m & \xrightarrow{\phi} & B, m_B \\
\downarrow \psi & & \downarrow \\
A_f, m \cdot A_f & &
\end{array}
$$

The morphism ψ sends the root $x \in m \cdot A_f$ on μ.

Proof. The proof is easy.

We now define an inductive system. Let S be the smallest family of local rings $(B, m \cdot B)$ such that
(1) $(A, m) \in S$;
(2) if $(B, m_B) \in S$, $f(X) = X^n + \cdots + a_1 \cdot X + a_0 \in B[X]$ with $a_1 \in B^\times$ and $a_0 \in m_B$, then $B_f, m_B \cdot B_f$ is in S.

It is easy to see that S is an inductive system. The ring A is canonically embedded in each local ring (B, m_B) in S, and $m_B = m \cdot B$.

Now we define the Henselization of A by

$$A^h = \lim_{\longrightarrow} B.$$

We have the following theorem.

Theorem 1. The ring A^h is a Henselian local ring with maximal ideal $m \cdot A_h$. If (B, m_B) is a Henselian local ring and $\phi : A \rightarrow B$ a morphism of local rings, there exists a unique morphism of local ring ψ such that the following diagram commutes:

$$
\begin{array}{ccc}
A, m & \xrightarrow{\phi} & B, m_B \\
\downarrow \psi & & \downarrow \\
A^h, m \cdot A^h & &
\end{array}
$$

Proof. The proof is easy, by induction on the family S.

References