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1 Introduction

An important requirement for the expression of cognitive structures is the
ability to form mental objects by rapidly binding together constituent parts
[2, 3]. In this sense, one may conceive the brain’s data structure to have the
form of graphs whose nodes are labeled with elementary features.

This data format has been used for visual object recognition [26, 4, 5, 16],
and in the Dynamic Link Matching approach [32, 33, 34, 9, 40]. In all these
approaches the data structure of stored objects has the form of graphs whose
nodes are labeled with elementary features. These are called model graphs
and provide a view-tuned representation [19, 21] of the object contained
in the presented image. They provide a versatile data format with the
capability to render the structure of any object. Because of the multitude of
possible object variations like changes in identity, pose, or illumination, the
graphs are required to be dynamic with respect both to shape and attributed
features.

Upon presentation of an image a so-called model graph should rapidly
emerge by binding together memorized subgraphs derived from earlier learn-
ing examples driven by the image features. Emergence of model graphs is a
laborious task which, in computer vision, has most often been disregarded
in favor of employing model graphs tailored to specific object categories like,
faces in frontal pose [9, 42, 40]. Recognition or categorization of arbitrary
objects, however, demands dynamic graphs, i.e., more emphasis must be
laid on the question of how model graphs are created from raw image data.

Relatively little work has been done on the dynamic creation of model
graphs. The object recognition system proposed in [35] is based on Dy-
namic Link Matching supplied with object memory. While learning novel
objects a so-called fusion graph is created through iteratively matching im-
age graphs with the fusion graph and grafting non-matched parts of image
graphs into the fusion graph. When an object is to be recognized, one or
more image graphs are compared against model memory via graph match-
ing, implemented by dynamic links. The matching parts of the fusion graph
thus constitute the model graph for the object contained in the input image.
The system has proven to perform well for a small number of object views.
During both learning and recognition the objects are required to be placed
in front of a plain background.
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A different approach is the creation of model graphs with minimal user-
assistance [13]. In that method, a growing neural gas [7] is used to determine
shape and topology of a model graph. Binarized difference images derived
from two consecutive images of the same moving object are used as an input
to a growing neural gas, whose nodes are attracted to superthreshold frame
differences. Upon an user-initiated event, Gabor jets are extracted at the
node positions and the produced model graph is stored in a model database.
During recognition, model graphs are matched in succession with the input
image. The compositional aspect is thus prominent while learning novel
objects but is absent during recognition. A rudimentary version of model
graph dynamics is also present in [42], where model graphs are adapted to
segmentation masks in order to ignore background influences.

Recognition methods relying on graph matching are correspondence-based in
the sense that image point correspondences are estimated before recognition
is attempted. This estimation is usually only possible on the basis of the
spatial arrangement of elementary features. There is also a class of recog-
nition algorithms, which are purely feature-based and completely disregard
feature arrangement. A prominent example is SEEMORE [15]. There it
is shown that a simple neural network can distinguish objects in a purely
feature-based way if enough feature types are employed. As a model for
recognition and categorization in the brain, feature-based methods can be
implemented as feedforward networks, which would account for the amazing
speed with which these processes can be carried out, relative to the slow pro-
cessing speed of the underlying neurons [28, 29]. These methods, however
encounter problems in the case of multiple objects and highly structured
backgrounds. From the point of view of pattern recognition, feature-based
methods are discriminative while graph matching is generative [30].

It is reasonable to assume that feedforward processing is applied as far as
it goes by excluding as many objects as possible and that only ambiguous
cases are subjected to correspondence-based processing, which is more time-
consuming.

In this chapter we propose a form of graph dynamics, which proceeds in
three steps. In the first step position-invariant feature detectors, which de-
cide whether a feature is present in an image, are learned from training
images. For processing arbitrary objects, features are small localized grid
graphs, so-called parquet graphs, whose nodes are attributed with Gabor
amplitudes. Through combination of these classifiers into a single layer
perceptron that conforms to Linsker’s infomax principle, the so-called pre-
selection network, a weighted majority voting scheme [10] is implemented.
It allows for preselection of salient learning examples, so-called model can-
didates, and likewise for preselection of salient categories the object in the
presented image supposedly belongs to. Each model candidate is verified
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Model
Candidates

Model
Graphs

Image

Recon-
structions

Model

0.931
0.928

0.904
0.860

Figure 2: Selection of the Model — Given the input image in the
first column, the preselection network selects four model candidates (sec-
ond column). As has been illustrated in fig. 1, a model graph is dynamically
constructed for each model candidate by assembling matching model features
into larger graphs according to their spatial arrangement (third column). The
fourth column shows the reconstruction from each model graph. Each model
candidate is verified using a rudimentary version of elastic graph matching.
Model graphs are optimally placed on the object contained in the input image
in terms of maximizing the measure of similarity (third column). The at-
tained similarities between the model candidates, represented by their model
graphs, and the input image are annotated to the reconstructions. The model
candidate that yields the best similarity to the input image is chosen as the
recognized model (fifth column).
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in a third step using a rudimentary version of elastic graph matching. To
further differentiate between model candidates with similar features it is
asserted that the features be in similar spatial arrangement for the model
to be selected. In this way model graphs are constructed dynamically by
assembling model features into larger graphs according to their spatial ar-
rangement (Fig. 1). Finally, the resulting model graphs are matched with
a rudimentary version of elastic graph matching, and the model candidate
that yields the best similarity to the input image is chosen as the recognized
model (Fig. 2).

The description of the method is accompanied by a case study, which ex-
emplifies the various steps on an example, in which only two images of two
objects are learned and distinguished.

2 Learning Set, Partitionings, and Categories

There are many different classifications that can be made on image data.
For object recognition, all instances of the same object under different pose
and/or illumination are to be put into the same class. An alternative learn-
ing problem may be the classification of illumination or pose regardless of
object identity. A hallmark of human visual cognition is the classification
into categories: we group together images of cats, dogs, insects, and rep-
tiles into the category ’animal’ and are able to differentiate animals from
non-animals with impressive speed [28].

Following [18] we use the term recognition for a decision about an object’s
unique identity. Recognition thus requires subjects to discriminate between
similar objects and involves generalization across some shape changes as
well as physical translation, rotation and so forth. The term categorization
refers to a decision about an object’s kind. Categorization thus requires
generalization across members of a class of objects with different shapes.
Especially, the system has to generalize over object identity.

We start by considering some finite set of images I and a subset D, which
we call the learning set. In our case study the learning set comprises two
images of different chewing gum packages in approximately the same pose
(Fig. 3).

In order to accommodate the various learning tasks that can be imposed on
a single image set we consider that there exist K partitionings Πk of the
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D =


I1

,
I2


Figure 3: Case Study: Learning Set — The learning set comprises two
images of different chewing gum packages in approximately the same pose.
The images are taken from the COIL-100 database [17]. In the following
these images are referred to as I1 and I2.

learning set (Eq. (1)). A partitioning Πk consists of Ck pairwise disjoint
partitions Ck

c .

Πk =
{

Ck
c ⊆ D

∣∣ 1 ≤ c ≤ Ck
}

with ∀c 6= c′ : Ck
c ∩ Ck

c′ = ∅ and
Ck⋃
c=1

Ck
c = D

(1)

The objects in the images of a particular partition are conceived to share a
common semantic property, for instance, being images of animals, or having
the same illumination direction. Accordingly, partitions in the following are
termed categories. Category labels c range between 1 and Ck; their range
implicitly depends on the number of categories in the underlying partitioning
Πk. For simultaneous recognition of the object’s identity and the object’s
pose the learning set is subdivided into single-element categories while for
object categorization purposes the learning set is usually organized in a
hierarchy of categories. Fig. 4 shows the single partitioning of the learning
set in our case study.

A hierarchical categorization task can be exemplified with the ETH-80 image
database [11]. That database comprises images of apples, pears, tomatoes,
dogs, horses, cows, cups, and cars in varying poses and identities and has
been used for the categorization experiments in 7.2. For those experiments
we created K = 3 partitionings of the learning set as shown in fig. 5.

3 Parquet Graphs

The feature-based part of the technique described in this paper can work
with any convenient feature type. A successful application employing color
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C1
1 =


I1


C1

2 =


I2


Figure 4: Case Study: Partitioning of the Learning Set — In our
case study there exists only K = 1 partitioning Π1 of the learning set (Fig. 3).
The partitioning consists of C1 = 2 single-element categories C1

1 = {I1} and
C1

2 = {I2}.

and multiresolution image information is presented in [38]. For the current
combination of feature- and correspondence-based methods we chose small
regular graphs labeled with Gabor features. We call them parquet graphs
inspired by the look of ready-to-lay parquet tiles. These can work as simple
feature detectors for preselection and be aggregated to larger graph entities
for correspondence-based processing.

Throughout this paper, parquet graphs are constituted out of V = 9 nodes.
In the following, a parquet graph f is described with a finite set of node
attributes: Each node v is labeled with a triple (xv,Jv, bv) where Jv is a
Gabor jet derived from an image at an absolute node position xv. Com-
putation and parameters of the Gabor features is the same as in [9, 40].
In order to make use of segmentation information it is convenient to mark
certain nodes as invalid and exclude them from further calculation in that
way. For this purpose the node attributes comprise the validity flag bv that
can take the values 0 and 1, meaning ’invalid’ and ’valid’. The horizontal
and vertical node distances ∆x and ∆y are set to 10 pixels in this work.

f = {(xv,Jv, bv)| 1 ≤ v ≤ V } (2)

Fig. 6 shows an example of a parquet graph that has been placed on the
object in learning image I1. Where appropriate, instances of parquet graphs
are, more generally, called features or feature instances.

For selection of salient categories and model candidates, the feature-based
part of the proposed system, a parquet graph describes a patch of texture
derived from an image regardless of its position in the image plane. Par-
ticularly, this means that the node positions are irrelevant for the decision
whether two images contain a similar patch of texture. Later, for verifica-
tion of the selected model candidates, i.e., learning images that may serve
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natural man-made

object

fruit animal

apple pear tomato dog horse cow

cup car

cup car

2Π

1Π

3Π

Images

Figure 5: Hierarchical Organization of Categories — A hierarchy
of categories on the ETH-80 image database [11], which contains images of
apples, pears, tomatoes, dogs, horses, cows, cups, and cars in varying poses
and identities. We created K = 3 partitionings Π1,Π2, and Π3. Partition-
ing Π1 comprises C1 = 2 categories of natural (C1

1) and man-made objects
(C1

2). Partitioning Π2 comprises C2 = 4 categories of fruits (C2
1), animals

(C2
2), cups (C2

3), and cars (C2
4). Finally, partitioning Π3 comprises C3 = 8

categories of apples (C3
1), pears (C3

2), tomatoes (C3
3), dogs (C3

4), horses (C3
5),

cows (C3
6), cups (C3

7), and cars (C3
8).
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(a) (b) (c)

Figure 6: Example of a Parquet Graph — Figure (a) shows a parquet
graph that has been placed on the object in learning image I1. Each node of
a parquet graph is attributed with Gabor amplitudes derived from an image
at the node’s position. Figure (b) shows the reconstruction from the parquet
graph. Figure (c) is an enlarged version of figure (b). The reconstruction is
computed with the algorithm from [20].

as models for the input image, larger graphs are constructed dynamically by
assembling parquet graphs derived from earlier learning images according to
their spatial arrangement. Thus, within the correspondence-based part, the
node positions will become important.

3.1 Similarity Function

The measure of similarity between two parquet graphs f and f ′ is defined
as the normalized sum of the similarities between valid Gabor jets [42, 24]
attached to nodes with the same index that stem from the given parquet
graphs (Eq. (4)). Throughout this paper, the similarity between two Gabor
jets is given by the normalized scalar product between the absolute values
of the complex components of the two jets (Eq. (3)). Let an denote the
absolute value of n-th filter response.

sabs

(
J ,J ′) =

∑
n ana′n√∑

n a2
n ·
∑

n a′n
2

(3)

By definition, the factors (bvb
′
v) are 1 if the respective jets Jv and J ′

v have
both been marked as valid, and 0 otherwise. Thus, these factors assert
that only similarities between jets that have both been marked as valid are
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taken into account. If all products become 0, the similarity between the two
parquet graphs yields 0.

sgraph

(
f, f ′

)
=


(

V∑
v=1

bvb
′
v

)−1

·
V∑

v=1
(bvb

′
v) · sabs (Jv,J ′

v) if
V∑

v=1
bvb

′
v > 0

0 otherwise

(4)

From the viewpoint of the correspondence problem, two parquet graphs in
different images establish a local field of contiguous point-to-point corre-
spondences. The similarity measure assesses how well points in two images
specified by the given parquet graphs actually correspond to each other. It
is well worth noting that parquet graphs provide a means to protect from
accidentally establishing point-to-point correspondences in that contiguous,
topographically smooth fields of good correspondences are favored over good
but topographically isolated ones.

3.2 Local Feature Detectors

For the assessment whether two parquet graphs f and f ′ convey similar
patches of texture with respect to a given sensitivity profile we introduce
local feature detectors that return 1 if the similarity between the given par-
quet graphs is greater or equal than a given similarity threshold 0 < ϑ ≤ 1,
and 0 otherwise (Eq. (5)). We say that two parquet graphs match with re-
spect to a given similarity threshold if the local feature detector returns 1.

ε
(
f, f ′, ϑ

)
=
{

1 if sgraph (f, f ′) ≥ ϑ
0 otherwise

(5)

Matching features are one argument for point-to-point correspondences, which
needs to be backed up by the spatial arrangement of several matching fea-
tures.

4 Learning a Visual Dictionary

Our goal is to formulate a graph dynamics that, upon image presentation,
lets a model graph rapidly emerge by binding together memorized subgraphs
derived from earlier learning examples. To that end we need to compute a
stock of parquet graphs from learning examples in advance. These play the
role of a visual dictionary. Parquet graphs derived from an input image
during classification are looked up in the dictionary to find out which image
and model features match. Each coincidence of a matching feature in the
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image and model domain may then be considered as a piece of evidence that
the input image belongs to the same categories as the learning image which
contains the model feature.

4.1 Feature Calculators

In eq. (6) we define R functions f r capable of extracting a set of features
out of an image. Let F denote the set of all possible features. In the
following these functions will be called feature calculators. The index r
implicitly specifies the parameterization of the parquet graphs returned from
the respective feature calculator f r, like the similarity threshold ϑr, which
is employed in the local feature detectors. Generally, feature calculators are
not restricted to parquet graphs; other types of features have been used in
[38, 23, 36, 1].

f r : I→ ℘ (F) with r ∈ {1, . . . , R} (6)

For extraction of parquet graphs, the inter-node distances ∆x and ∆y are
also used to specify a grid in the image plane. At each grid position allow-
ing for placement of a whole parquet graph a parquet graph is extracted.
Scanning of the image starts in the upper left corner from left to right to
the lower right corner. If the image is known to be figure-ground segmented,
parquet graphs with the majority of nodes residing in the background will
be disregarded, the others have background points marked as invalid.

In the case study, we employ only R = 1 feature calculator f1. The feature
calculator returns a set of parquet graphs with ten pixels distance between
two neighbored nodes in horizontal and in vertical direction, respectively.
Fig. 7 shows the result of consecutively applying this feature calculator to
both learning examples.

4.2 Feature Vectors

Looking at the number of parquet graphs that have been extracted from
just two images (Fig. 7) it is clear that for learning sets with thousands or
even ten thousands of images the total number of features would grow into
astronomical dimensions. Consequently, we have to limit the total number
of features to a tractable number. For this task we employ a simple variant
of vector quantization [8], a lossy data compression technique. The applied
vector quantization method is shown as pseudo code in fig. 8. In this fashion,
each of the R feature calculators is used to compute a feature vector f r with
r ∈ {1, . . . , R}. In the following T r denotes the number of features in feature
vector f r. All R feature vectors constitute the visual dictionary.
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Figure 7: Case Study: Application of the Feature Calculator to
the Learning Images — The thumbnail images in the returned sets on
the right hand side are reconstructions from the extracted parquet graphs.
Each reconstruction is uniquely labeled with a tuple. The first component
addresses the learning image the parquet graph stems from while the second
component is a sequential number.
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Algorithm 1: vectorQuantization

Parameter: Learning Set: D
Parameter: Feature Calculator: f r : I→ ℘ (F)
Parameter: Similarity Threshold: ϑr; 0 < ϑr ≤ 1
Result : Feature Vector of Length T r: f r

Fr ← ∅1

T r ← 02

forall I ∈ D do3

forall f ∈ f r(I) do4

if ∀f ′ ∈ Fr : ε (f, f ′, ϑr) = 0 then5

Fr ← Fr ∪ {f}6

T r ← T r + 17

end8

end9

end10

f r =: (f r
t )1≤t≤T r ← (0)1≤t≤T r11

t← 012

forall f ∈ Fr do13

f r
t ← f14

t← t + 115

end16

return f r
17

Figure 8: Vector Quantization Method — The algorithm computes a
codebook of so-called codebook vectors. In our case parquet graphs become
employed as codebook vectors while the codebook is a set of parquet graphs.
The size of the feature set depends considerably on the value of the similarity
threshold ϑr. For lower values of ϑr many features will be disregarded and
the final feature set will become rather small. Conversely, higher values of
ϑr close to one lead to low compression rates and large feature sets. We
demand random access to each particular feature in the computed codebooks.
Therefore, we translate the codebook into a feature vector f r of length T r

where T r terms the number of codebook features. Let, as a shorthand, f r
t

address the feature with index t in the feature vector with index r, throughout.
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In our case study, application of the vector quantization algorithm using
feature calculator f1 with a similarity threshold of ϑ1 = 0.92 yields the
result presented in tab. 1. The final feature vector f1 =

(
f1

t

)
1≤t≤8

comprises
T r = 8 parquet graphs.

5 Preselection Network

In this section we will present the second step of the proposed form of
graph dynamics: a feedforward neural network that allows for preselection
of salient learning examples, so-called model candidates, and likewise for
preselection of salient categories the object in the presented image suppos-
edly belongs to. This network will be called the preselection network. It
is a fully-connected single layer perceptron [22] implementing a weighted
majority voting scheme [10]. In the network’s input layer position-invariant
feature detectors submit their assessments whether their reference feature
is present in an image to dedicated input neurons while the output layer
comprises one neuron for each predefined category. Synaptic weights are
chosen such that the preselection network conforms to Linsker’s infomax
principle [12], stating that the output of each cell preserves maximum infor-
mation [25] about its input. This setup in conjunction with the application
of the winner-take-most or winner-take-all nonlinearity as decision function
implements a weighted majority voting scheme that allows for the desired
preselection of salient categories and model candidates.

Here, the selection of salient categories and model candidates is only based
on feature coincidences in image and model domain. As their spatial ar-
rangement is disregarded false positives are frequent among the selected
model candidates. To rule them out similar spatial arrangement of features
will be asserted for the model to be selected in the correspondence-based
verification part (Section 6).

5.1 Neural Model

In the preselection network we employ two types of generalized McCulloch
& Pitts neurons [14], variant A with identity and variant B with a Heaviside
threshold function H(·) as output function. The output of a neuron of type
A is equal to the weighted sum of its inputs

∑N
n=1 xnwn with xn being

the presynaptic neurons’ outputs and the wn being synaptic weights. The
output of a neuron of type B is 1, if the weighted sum of its inputs is greater
than 0, and 0 otherwise.



Feature-driven Emergence of Model Graphs 16

Codebook
Features

Disregarded Features

f1
1 =

(1,1)

0.96

(1,2)

0.93

(1,3)

0.97

(1,12)

0.95

(1,13)

0.92

(1,14)

0.93

(1,22)

0.95

(2,1)

0.93

(2,12)

f1
2 =

(1,4)

0.97

(1,5)

0.97

(1,6)

0.96

(1,7)

0.94

(1,8)

0.95

(1,15)

0.93

(1,16)

0.93

(2,2)

0.94

(2,3)

0.94

(2,4)

0.93

(2,5)

0.93

(2,6)

0.93

(2,7)

0.92

(2,8)

0.92

(2,14)

0.93

(2,15)

0.93

(2,16)

0.92

(2,17)

0.92

(2,18)

f1
3 =

(1,9)

0.95

(1,10)

0.94

(1,19)

0.96

(1,20)

0.96

(2,9)

0.94

(2,10)

0.94

(2,19)

0.95

(2,20)

f1
4 =

(1,11)

0.94

(1,21)

0.94

(1,31)

0.97

(2,11)

f1
5 =

(1,17)

0.97

(1,18)

0.94

(1,24)

0.93

(1,25)

0.93

(1,26)

0.95

(1,27)

0.93

(1,28)

f1
6 =

(1,23)

0.93

(1,29)

0.92

(1,30)

0.93

(2,22)

0.94

(2,23)

f1
7 =

(2,13)

0.93

(2,24)

f1
8 =

(2,21)

0.96

(2,25)

Table 1: Case Study: Computation of Feature Vector f1 — The
table shows the result of applying the vector quantization algorithm using
feature calculator f1 with a similarity threshold of ϑ1 = 0.92. The table’s
leftmost column comprises those parquet graphs that have been chosen as
codebook features. The column on the right hand side shows the disregarded
parquet graphs. The lower labels have been introduced in fig. 7, the upper
labels are the similarities between the disregarded parquet graph and the re-
spective codebook feature. The final feature vector f1 =

(
f1

t

)
1≤t≤8

comprises
T r = 8 parquet graphs.
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5.2 Position-invariant Feature Detectors

To test the presence of a particular feature from the visual dictionary, in
the following called reference feature, in an image we construct a position-
invariant feature detector out of local feature detectors (Section 3.2). For
this task, we distribute instances of local feature detectors uniformly over
the image plane. For a given reference feature, combining the local feature
detectors in a linear discriminant yields a position-invariant feature detector
that returns 1 if the reference feature is observed at at least one position
and 0 otherwise. Fig. 9 shows how a position-invariant feature detector is
constructed for a feature f r

t from the visual dictionary. For a given feature
f r

t , the symbol τ r
t denotes the respective position-invariant feature detector

and τ r
t (I) (Eq. (7)) its result. We will say that a position-invariant feature

detector τ r
t has found or observed its feature f r

t in input image I if τ r
t (I) = 1.

From now on, we use the term feature detector only for the position-invariant
version.

τ r
t : I→ {0, 1} ; τ r

t (I) = H

 ∑
f∈fr(I)

ε (f, f r
t , ϑr)

 (7)

For the sake of simplicity we regard the feature detectors as the perceptron’s
processing elements [22], rather than an additional layer.

Each time a feature detector has found its reference feature f r
t in the input

image, we add a pair (f, f r
t ) to a table of matching features, where f stems

from the input image. That table is cleared before each image presentation.

Fmatch (I)← Fmatch (I) ∪ {(f, f r
t )} (8)

5.3 Weighting of Feature Detectors

From the example in tab. 1 it becomes clear that the feature detectors have
varying relevance for the selection of salient categories. In the following
the contributions of feature detectors to choosing salient categories are de-
scribed through measures of information. Shannon has defined information
as the decrease of uncertainty [25]. In this sense, a natural definition of the
measures of information is presented in eq. (9). For a given feature detector
τ r
t that has found its reference feature f r

t in the input image and for a given
partitioning Πk, the information ir,kt that feature detector contributes to
the decision about choosing categories of partitioning Πk is defined by the
difference between the largest possible amount of uncertainty and the fea-
ture detector’s amount of uncertainty encoded by the Shannon entropy Hr,k

t .
P
[
Ck

c

∣∣ f r
t

]
describes the conditional probability that the genuine category is
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Figure 9: Position-Invariant Feature Detector — The position-
Invariant feature detector returns 1 if a given feature f r

t is present in image
I, and 0 otherwise. At each grid position allowing for placement of a whole
parquet graph a local feature detector is installed that compares the local
graph with the reference feature f r

t . Technically, this has been implemented
by applying feature calculator f r to the given image I. If the feature calcu-
lator returns a set of N parquet graphs {fn| 1 ≤ n ≤ N}, each local feature
detector compares its feature fn with the reference feature f r

t with respect
to similarity threshold ϑr. Then, each local feature detector passes its result
into a single layer perceptron with N input units of type A, one output unit
of type B, and feedforward connections of strength 1 between each input unit
and the output neuron. The net’s output is 1 if at least one of the local
feature detectors has found its reference feature in the given image, and 0
otherwise. In this fashion, a position-invariant feature detector is instanti-
ated for each feature in the visual dictionary.



Feature-driven Emergence of Model Graphs 19

Ck
c given that feature f r

t has been observed. In this fashion measures of in-
formation are calculated for all features in the visual dictionary with respect
to all partitionings of the learning set. Similar approaches are proposed in
[31, 6].

ir,kt = ln Ck −Hr,k
t = ln Ck +

Ck∑
c=1

P
[
Ck

c |f r
t

]
· lnP

[
Ck

c |f r
t

]
(9)

For a given partitioning Πk, the measures of information range between 0
and lnCk. If a feature occurs in all categories of that partitioning, the
respective feature detector cannot make a contribution and, accordingly, its
measure of information is 0. Conversely, if a feature occurs in only one
category, the respective feature detector contributes maximally; its measure
of information is lnCk.

Assuming that all prior probabilities for choosing a category are the same,
the conditional probabilities P

[
Ck

c

∣∣ f r
t

]
are calculated through application

of Bayes’ rule (Eq. (10)). The nr
t (C) denote the total number of observations

of feature f r
t in the images of the parameterized category C. For a given

category Ck
c and a given feature f r

t , we may interpret this probability as the
frequency of that feature among the categories of partitioning Πk. Tab. 2
demonstrates the calculation of measures of information in our case study.

P
[
Ck

c

∣∣∣ f r
t

]
=

nr
t

(
Ck

c

)
Ck∑

c′=1

nr
t

(
Ck

c′
) (10)

5.4 Neurons, Connectivity, and Synaptic Weights

The preselection network is a single-layer perceptron comprising a layer of
input and a layer of output neurons. In the network’s input layer, we assign
neurons of type A to the feature detectors. Thus, the network comprises
Vin =

∑R
r=1 T r input neurons. By definition, each input neuron passes the

result of its feature detector into the network. In the network’s output layer,
we assign neurons of type A to the predefined categories. Accordingly, the
network contains Vout =

∑K
k=1 Ck output neurons.

For fulfillment of the infomax principle, we define the synaptic weight wr,k
t,c

between the presynaptic neuron assigned to a feature detector τ r
t and the

postsynaptic neuron assigned to a category Ck
c as follows. Imagine that

feature f r
t can both be observed in the input image and in at least one image

of that category. Then, this may be considered as a piece of evidence that
the input image belongs to that category. Consequently, feature detector τ r

t
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Feature
Index (t)

Feature
(f1

t )
n1

t

(
C1

1

)
n1

t

(
C1

2

)
P
[
C1

1

∣∣ f1
t

]
P
[
C1

2

∣∣ f1
t

]
i1,1
t

1
(1, 1)

7 2 7
9

2
9 0.1634

2
(1,4)

7 12 7
19

12
19 0.035

3
(1,9)

4 4 1
2

1
2 0

4
(1,11)

3 1 3
4

1
4 0.1307

5
(1,17)

7 0 1 0 0.6931

6
(1,23)

3 2 3
5

2
5 0.0201

7
(2,13)

0 2 0 1 0.6931

8
(2,21)

0 2 0 1 0.6931

Table 2: Case Study: Calculation of Measures of Information —
The table demonstrates the calculation of the feature detectors’ measures of
information. The parquet graphs in the second column stem from the visual
dictionary and may be looked up in tab. 1. The number of feature occurrences
n1

t

(
C1

1

)
and n1

t

(
C1

2

)
in columns three and four can be verified by counting

the occurrences of the respective reference feature f1
t within categories C1

1

and C1
2 (Tab. 1). The probabilities P

[
C1

1

∣∣ f1
t

]
and P

[
C1

2

∣∣ f1
t

]
in columns

five and six have been calculated using eq. (10), and, finally, the measures
of information i1,1

t in column seven have been calculated using eq. (9). One
can easily verify that the measures of information scale proportionally with
the feature detectors’ contributions to choosing salient categories.
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Figure 10: Preselection Network — The preselection network is a fully-
connected single-layer perceptron. In its input layer neurons of type A have
been assigned to the feature detectors. Accordingly, the network comprises
Vin =

∑R
r=1 T r input neurons. Each input neuron passes the binary result of

its feature detector into the network. In the network’s output layer neurons
of type A have been assigned to the predefined categories. Accordingly, the
network contains Vout =

∑K
k=1 Ck output neurons. The synaptic weights

wr,k
t,c are chosen in a way such that the whole network conforms to Linsker’s

infomax principle. The output of the postsynaptic neuron that has been
assigned to a given category Ck

c will be called the saliency of that category
and is denoted by sk

c (I).
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W 1,1 =

H

∑
I∈C1

c

τ1
t (I)

 · i1,1
t


1≤c≤2
1≤t≤8

=
(

0.1634 0.035 0 0.1307 0.6931 0.0201 0 0
0.1634 0.035 0 0.1307 0 0.0201 0.6931 0.6931

)
=:
(
w1,1

t,c

)
1≤c≤2
1≤t≤8

Figure 11: Case Study: Weight Matrix — In our case study, fea-
ture vector f1 comprises eight features and the learning set has been parti-
tioned into two categories. Accordingly, weight matrix W 1,1 is of dimensions
(2× 8). The measures of information i1,1

t that have been assigned to the re-
spective feature detectors τ1

t can be looked up in tab. 2. Synaptic weights w1,1
7,1

and w1,1
8,1 have become 0 because the respective features f1

7 and f1
8 cannot be

observed in the only image I1 of category C1
1. The same is likewise the case

for weight w1,1
5,2. The synaptic weights w1,1

3,1 and w1,1
3,2 have become 0 because

the quantitative measure of information i1,1
3 is 0.

should contribute its quantitative amount of information ir,kt to the output
of the postsynaptic neuron assigned to that category Ck

c . Conversely, if that
category contains only images in which that feature cannot be observed, the
feature detector should never be allowed to make a contribution at all.

Using this construction rule of synaptic weights, we define R · K matrices
of synaptic weights W r,k: one matrix per feature vector/partitioning com-
bination. For a given feature vector f r and a given partitioning Πk, weight
matrix W r,k (Eq. (11)) is of dimensions (Ck × T r). That matrix comprises
the synaptic weights wr,k

t,c of the connections between the input neurons as-
signed to feature detectors τ r

t and the output neurons assigned to categories
Ck

c . The indices t of the presynaptic neurons range between 1 and T r and
the indices c of the postsynaptic neurons between 1 and Ck.

W r,k =

H

∑
I′∈Ck

c

τ r
t

(
I ′
) · ir,kt


1≤c≤Ck

1≤t≤T r

=:
(
wr,k

t,c

)
1≤c≤Ck

1≤t≤T r

(11)
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In our case study, feature vector f1 comprises eight features and the learning
set has been partitioned into two categories. Accordingly, weights matrix
W 1,1 is of dimensions (2× 8). The matrix is shown in fig. 11.

5.5 Saliencies

The output of the postsynaptic neuron of a category Ck
c will be called the

saliency of that category and is denoted by sk
c (I). With respect to an input

image I, that saliency is defined as the sum of the measures of information
ir,kt of those feature detectors τ r

t whose reference feature coincides in the
input image and in at least one image of category Ck

c . Thus, a saliency
value is the accumulated evidence contributed by these feature detectors: the
more pieces of evidence have been collected, the more likely the input image
belongs to that category. For each partitioning of the learning set we can
calculate a saliency vector sk of length Ck by summing up the matrix vector
products of the weight matrices W r,k with the vector of feature detector
responses (τ r

t (I))1≤t≤T r over all feature R vectors in the visual dictionary
(Eq. (12)). Fig. 10 shows the complete preselection network.

sk : I→ RCk
; sk (I) =

R∑
r=1

W r,k · (τ r
t (I))1≤t≤T r =:

(
sk
c (I)

)
1≤c≤Ck

(12)

5.6 Selection of Salient Categories and Model Candidates

For selection of salient categories for the input image I we apply a winner-
take-most nonlinearity as a decision rule. For a given partitioning Πk, the
set Γk (I) comprises all categories of the partitioning with superthreshold
saliencies. The threshold is defined relative to the maximal saliency with
a factor θk with 0 < θk ≤ 1 (Eq. (13)). For θk = 1 only the most salient
category will be selected: the decision rule becomes the winner-take-all non-
linearity then.

Γk (I) =
{

Ck
c ∈ Πk

∣∣∣ sk
c (I) ≥ θk · max

1≤c′≤Ck

{
sk
c′ (I)

}}
(13)

A necessary requirement for a learning image to become a model for the
given input image is to be a member of each salient category. Accordingly,
the set of model candidates M (I) for input image I is the set of those
learning images that belong to all salient categories (Eq. (14)). Learning
images that satisfy this requirement are called model candidates. They will
be passed to the correspondence-based verification for further selection.

M (I) =
⋂K

k=1

⋃
C∈Γk(I)

C (14)



Feature-driven Emergence of Model Graphs 24

6 Verification of Model Candidates

Up to here, model candidates have been selected by set intersection on salient
categories (Eq. (14)). The categories’ saliencies as computed by the prese-
lection network are solely based on the detection of coincidental features.
The spatial arrangement of features, parquet graphs in our case, has been
fully ignored, which can be particularly harmful in cases of multiple objects
or structured backgrounds.

In the following model candidates are further verified through asserting that
the features be in similar spatial arrangement for the model to be selected.
More specifically, they are verified with a variant of elastic graph matching
[33, 9, 40]. For each model candidate an image and a model graph are dy-
namically constructed through assembling corresponding features into larger
graphs according to their spatial arrangement. For each model candidate
the similarity between its image and model graph is computed. The model
candidate that attains the best similarity is chosen as the model for the
input image. Its model graph is the closest possible representation of the
object in the input image with respect to the learning set.

6.1 Construction of Graphs

Construction of graphs proceeds in three steps. First, from the table of
matching features, which has been assembled while computing the cate-
gories’ saliencies (Eq. (8)), all feature pairs whose model feature can be
observed in the current model candidate are collected in a smaller table of
corresponding features. Second, templates of an image and of a model graph
are instantiated with unlabeled nodes. The number and the positioning of
nodes is determined by the valid nodes of image and model parquet graphs.
Third, at each node position, separately for image and model graph, a bunch
of Gabor jets is assembled whose jets stem from valid-labeled parquet graph
nodes located at that position. The respective nodes of the image or model
graph become attributed with these bunches.

6.1.1 Table of Corresponding Features

During calculation of the categories’ saliencies pairs of matching features,
one feature from the input image and the other from a learning image, have
been collected in a table of matching features (Eq. (8)). Given a model
candidate M ∈ M (I) for an input image I (Section 5.6), all feature pairs
whose model feature can be observed in the current model candidate are
transferred into a table of corresponding features Fcorr (I,M) (Eq. (15)).
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That table is used for efficient aggregation of local features, parquet graphs
in our case, into larger model and image graphs. We assume that the table of
corresponding features comprises N feature pairs, a number which depends
implicitly on the model candidate. Let f I

n denote the n-th image and let
fM

n denote the n-th model parquet graph. Note that from now on we speak
of corresponding rather than of matching parquet graphs and assume that
those graphs establish a field of contiguous point-to-point correspondences
between the input image and the model candidate.

Fcorr (I,M) =

{(
f I

n, fM
n

)
∈ Fmatch (I)

∣∣∣∣ 1 ≤ n ≤ N ∧

H

(
R∑

r=1

∑
f∈fr(M)

ε
(
f, fM

n , 1
))

= 1

} (15)

Nodes of parquet graphs are attributed with a triple consisting of an absolute
image position, a Gabor jet derived from an image at that position, and a
validity flag. In order to be able to globally address node label components
the following notation is introduced: the nodes of image parquet graphs
are attributed with triples

(
xI

n,v,J I
n,v, b

I
n,v

)
where n specifies the index of

the feature pair in the table of corresponding features and v encodes the
node index. The same notation is used for model parquet graphs, with an
superscript M for distinction (Eq. (16)).

f I
n =

{(
xI

n,v,J I
n,v, b

I
n,v

)∣∣ 1 ≤ v ≤ V
}

fM
n =

{(
xM

n,v,JM
n,v, b

M
n,v

)∣∣ 1 ≤ v ≤ V
} (16)

6.1.2 Graph Templates

First templates of an image and of a model graph are instantiated without
node labels. Number and positioning of nodes are determined by the valid
nodes of image and model parquet graphs. For this purpose, the positions
of all valid nodes of image and model parquet graphs are collected into sets
XI and XM , respectively (Eq. (17)). The creation of graph templates is
illustrated in fig. 12.

XI =
⋃

n,v

{
xI

n,v

∣∣ bI
n,v = 1

}
XM =

⋃
n,v

{
xM

n,v

∣∣ bM
n,v = 1

} (17)

6.1.3 Node Labels

The nodes of model and image graphs become attributed with bunches of
Gabor jets: nodes of image graphs become labeled with bunches of Gabor
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jets that stem from valid-labeled nodes of image parquet graphs located at
a given position x in the input image. Nodes of model graphs are just the
same attributed with bunches of jets that stem from valid-labeled nodes of
model parquet graphs located at a given position x in the model candidate.
The assembly of Gabor jets derived from image and model parquet graphs
into bunches is also illustrated in fig. 12.

βI (x) =
⋃

n,v

{
J I

n,v

∣∣xI
n,v = x ∧ bI

n,v = 1
}

βM (x) =
⋃

n,v

{
JM

n,v

∣∣xM
n,v = x ∧ bM

n,v = 1
} (18)

For the assessment whether a point in the input image defined by a node
of the image graph corresponds to a point in the model candidate defined
by a node of the model graph a measure of similarity between two bunches
of jets is needed. The similarity between two bunches is computed with a
cross run over all their jets (Eq. (19)). The function returns the maximal
similarity between jets computed within that cross run. The measure of
similarity between two jets is based on the Gabor amplitudes (Eq. (3)). If
one of the bunches is empty the similarity between them yields 0.

sbunch

(
β, β′

)
=

{
0 if β = ∅ ∨ β′ = ∅

max
J∈β,J ′∈β′

{sabs (J ,J ′)} otherwise (19)

6.1.4 Graphs

Like parquet graphs, image and model graphs are specified by a set of node
labels. Node labels comprise an absolute position in the input or model
image drawn from the sets of node positions (Eq. (17)) and the bunch that
has been assembled at that position (Eq. (18)). The image graph is decorated
with an superscript I while the model graph receives an superscript M
(Eq. (20)).

GI =
⋃

x∈XI

{(
x, βI (x)

)}
GM =

⋃
x∈XM

{(
x, βM (x)

)} (20)

Model graphs of well-suited model candidates provide an approximation of
the object contained in the input image by features present in the visual
dictionary. Fig. 2 shows a number of model graphs (third column) that
have been constructed for the input image given in the first column. The
reconstructions from the model graphs of the first two model candidates in
column four demonstrate that the emerged model graphs describe the object
contained in the input image well.
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The constructed graphs are to some extent reminiscent of bunch graphs
[39, 40]. Nevertheless, since they are restricted to only one model candidate
we rather speak of model instead of bunch graphs. It is however worthwhile
mentioning that the presented procedure of graph construction may as well
serve for creation of bunch graphs. For compilation of bunch graphs the set
of corresponding features has to provide feature pairs of model candidates
picked from a carefully chosen subset M̃ (I) of the set of model candidates
(Eq. (21)). The graph construction procedure is then as well applicable to
the construction of bunch graphs.

Fbunch
corr

(
I, M̃ (I)

)
=
⋃

M∈M̃(I)
Fcorr (I,M) (21)

6.2 Matching

In order to find the object contained in the input image and to overcome ac-
cidentally corresponding parquet graphs, the emerged model graph is moved
as a template over the entire image plane. This action can be compared with
the scan global move which is usually performed as the first step of elastic
graph matching [9, 40]. It is also very similar to multidimensional template
matching [42]. For each translation of the model graph the similarity be-
tween model and image graph is computed. The translation vector that
yields the best similarity defines the optimal placement of the model graph
in the image plane. In the process, the model graph’s absolute node posi-
tions are transformed into relative ones by subtracting a displacement vector
t0 from the positions of the model graph’s nodes. That vector is chosen such
that after subtraction the smallest x and the smallest y coordinate become
zero (Eq. (22)). However, the y coordinate of the leftmost node is not nec-
essarily 0. The same is the case for the x coordinate of the uppermost node.

t0 =
(

min
n,v

{(
xM

n,v

)
x

}
,min

n,v

{(
xM

n,v

)
y

})>
(22)

The similarity between model and image graph with respect to a given trans-
lation vector t is defined as the normalized sum of the similarities between
the image and model bunches (Eq. (23)).

s (I, M, t) =
∣∣∣GM

∣∣∣−1
·
∑

(xM ,βM )∈GM

sbunch

(
βI
(
xM − t0 + t

)
, βM

)
(23)

In order to find the object contained in the input image the model graph
is iteratively translated about a displacement vector in the image plane so
that the measure of similarity between model and image graph becomes



Feature-driven Emergence of Model Graphs 28

Model Candidate

(a)

Model Candidate

(b)

Figure 12: Construction of Model Graphs — Fig. (a) provides a side,
fig. (b) a top view of the same setup. For clarity, both figures show only
two overlapping model parquet graphs fM

1 and fM
2 drawn from the table of

corresponding features. For illustration of the overlap the graphs are drawn
in a stacked manner. Number and position of the model graph’s nodes are
determined by the valid-labeled model parquet graph nodes (green nodes).
Nodes that reside in the background have been marked as invalid (red nodes).
In fig. (b) the shape of the emerging model graph can be seen. Compilation
of bunches is demonstrated with two bunches only. Like stringing pearls, all
valid Gabor jets at position xM

1 are collected into bunch βM
(
xM

1

)
and those

at positions xM
2 become assembled into bunch βM

(
xM

2

)
. From fig. (a) we can

learn that bunch βM
(
xM

1

)
comprises two jets while bunch βM

(
xM

2

)
contains

only one jet. Image graphs are constructed in the very same fashion.
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maximal (Eq. (24)). The model graph thus moves to the position where the
object contained in the input image is located. Let sbest (I,M) denote the
similarity attained at that position. The displacement vectors t stem from
a set G of all grid points defined by the given inter-node distances ∆x and
∆y between two consecutive nodes in the parquet graphs (Section 4).

sbest (I, M) = max
t∈G

{
s (I,M, t)

}
(24)

6.3 Model Selection

For selection of the model, the most similar learning image for the given
input image, an image and a model graph are constructed for each model
candidate. The model candidate that attains the best similarity between its
model and image graph is chosen as the model for the input image (Eq. (25)).

Mbest = arg max
M∈M(I)

{
sbest (I,M)

}
(25)

In fig. 2 four model candidates (column two) have been computed for the
given input image (column one). The similarities attained through matching
image against model graphs are annotated to the reconstructions from the
model graphs (column four). Since the first model candidate yields the
highest similarity, it is chosen as the model for the object in the input
image.

7 Experiments

We report experimental results derived from standard databases for object
recognition and categorization. The results are excerpted from [37].

7.1 Object Recognition

Object recognition experiments were conducted on the COIL-100 image
database [17]. That database contains images of 100 objects in 72 poses
per object, thus, 7200 image in total. We present the results of three exper-
iments. First, we investigated the recognition performance with respect to
object identity and pose for input images containing a single object, second,
we analyzed the recognition performance for input images containing mul-
tiple objects, and third, recognition performance was measured for images
of partially occluded objects.
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Input Image

Model Candidate

Figure 13: Matching Setup — The setup consists of the input image,
the model candidate, and the graphs constructed using the method presented
in section 6.1. For clarity only two pairs of corresponding parquet graphs
have been taken from the table of corresponding features. Parquet graph
f I
1 corresponds to fM

1 and that f I
2 corresponds to fM

2 . Like in fig. 12, green
nodes represent nodes that have been marked as valid and red nodes represent
nodes that have been marked as invalid due to residing in the background.
Since only learning images provide figure-ground information, invalid nodes
appear only in the model parquet graphs. The compilation of bunches is
illustrated for two exemplary positions xI

1 and xI
2 in the input image and

xM
1 and xM

2 in the model candidate. In order to find the object in the input
image the model graph is iteratively moved over the entire image plane and
matched to the image graph.
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Experimental results were attained in a fivefold cross-validation [41]. We
thus created five pairs of disjoint learning and testing sets from all COIL-100
images. The learning sets comprise 56, the testing sets 14 views per object,
thus, 5600 or 1400 images in total, respectively. The object recognition
application is designed to simultaneously recognize the object’s identity and
pose. This is achieved by creating K = 1 partitioning of the learning set.
That partitioning consists of single-element categories. Moreover, from each
learning set a visual dictionary with R = 2 feature vectors of increasing
length was calculated using similarity thresholds of ϑ1 = 0.9 and ϑ2 =
0.95 (Algorithm 1). Sorting feature vectors according to detailedness is
harnessed in a procedure that allows for accelerated search of features [37].
Computation and parameters of the Gabor features are the same as in [9, 40],
i.e., five scales, eight orientations, kmax = π

2 , kstep =
√

2, and σ = 2π. For
this parameterization, the horizontal and vertical node distances ∆x and
∆y are set to 10 pixels.

In the following we present recognition results computed within the cross-
validation and their dependence on relative weighting of the feature- and
correspondence-based parts. Each data point was averaged over 5 · 1400 =
7000 single measurements. Weighting of the feature- and correspondence-
based part is controlled by the threshold scaling factor θ1 (Eq. (13)) that
ranges between 0.1 and 1, sampled in 0.1-steps. θ1 determines the final
number of model candidates that are passed to the correspondence-based
verification part. For θ1 = 1 only one model candidates is selected while
for low values the set of model candidates encompasses large portions of the
learning set. That factor thus enables us to adjust the balance between the
feature- and correspondence-based parts.

7.1.1 Recognition of Single Objects

In the first experiment we present images containing a single object and
evaluate the recognition performance with respect to object identity and
pose. We analyzed the system’s performance for each of the combinations
segmented/unsegmented images and preselection network conforming/non-
conforming to the infomax principle (Section 5). The experiment is sub-
divided into eight test cases. In the first four test cases the recognition
performance with respect to object identity was evaluated for each of these
combinations while the system’s ability to recognize the objects’ poses was
investigated in the remaining four test cases. Since the images of the COIL-
100 database are perfectly segmented, the unsegmented images have been
manually created by pasting the object into a cluttered background con-
sisting of arbitrarily chosen image patches of random size derived from the
other test images of the current testing set. Fig. 14 shows an example of
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(a) (b)

Figure 14: Input Images of a Single Object — The figure shows an
object from the COIL-100 database [17] as (a) segmented and (b) unseg-
mented image. Since the images of that database are perfectly segmented,
the unsegmented images have been manually created through pasting the ob-
ject contained in the segmented image into a cluttered background consisting
of arbitrarily chosen image patches of random size derived from the other
test images of the current testing set.

a segmented and of an unsegmented image. In order to asses the useful-
ness of the choice of synaptic weights according to eq. (11) the preselection
networks are made incompatible to the infomax principle by putting their
weights out of tune by eq. (26). Choosing the synaptic weights in this fash-
ion the categories’ saliencies become simple counters of feature coincidences,
the weighted majority voting scheme degenerates to a non-weighted one.

Ŵ
r,k

=

H

∑
I′∈Ck

c

τ r
t

(
I ′
)

1≤c≤Ck

1≤t≤T r

=:
(
ŵr,k

t,c

)
1≤c≤Ck

1≤t≤T r

(26)

The recognition performance with respect to object identity is shown in
fig. 15 (a). We considered the object in the test image to be correctly
recognized if test and model image show the same object regardless of its
pose. Throughout, better recognition rates are attained if segmented images
were presented. Moreover, the infomax principle always slightly improved
performance where that improvement is continually exhausted in gradually
putting more and more emphasis on the correspondence-based part, i.e.,
the achieved improvement is continually used up while moving from the
left to the right hand side in fig. 15. Most interestingly, a well-balanced
combination of the feature and correspondence-based part led to optimal
performance, throughout. Only for such well-balanced combinations the se-
lection of model candidates is optimally carried out in the sense that neither
too few nor too many learning images become chosen as model candidates.
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If the number of model candidates is too small, the spectrum of alternatives
the correspondence-based part can choose from becomes too limited. This
is especially harmful, if false positives are frequent among model candidates.
Conversely, the number of false positives among model candidates unavoid-
ably increases with overemphasis of the correspondence-based part: for too
low values of the threshold scaling factor even learning images of weakly
salient categories become selected as model candidates. Accordingly, the
probability of choosing a false positive as the final model increases, the
average recognition rate decreases. The same findings hold true for the
performance with respect to object pose given in fig. 15 (b). The average
pose errors were calculated over the absolute values of angle differences of
correctly recognized, non-rotation-symmetric objects. Note that two con-
secutive learning images of the same object are at least five degrees apart.

7.1.2 Recognition of Multiple Objects

The second experiment is concerned with the recognition of multiple, si-
multaneously presented, non-overlapping objects with respect to the same
weightings of the feature-based and correspondence-based part as in the
first experiment. In the current experiment only the recognition perfor-
mance with respect to object identity was evaluated. The experiment is
subdivided into six test cases. In the first three test cases we simultaneously
presented N (N = 2, 3, 4) objects placed in front of a plain black back-
ground while in the last three test cases cluttered background was manually
added. The procedure of background construction was the same as in the
first experiment. Fig. 16 shows two images containing four objects with and
without background. Objects are randomly picked, a test image contains
only different ones, and each object appears at least once. The system in
this case returns the N most similar models. Each coincidence with one of
the presented objects is accounted as a successful recognition response. The
average recognition rates in fig. 17 were calculated over all responses.

From the results presented in fig. 17 we learn that, compared to the single-
object experiments, the point of optimal recognition performance has con-
siderably moved to the right hand side. Putting more emphasis on the
correspondence-based verification part thus improves recognition perfor-
mance. However, overemphasis of that part caused by too small values
of the threshold scaling factor θ1 again led to a decrease in recognition per-
formance. This phenomenon can be observed in the test cases with unseg-
mented images (Fig. 17 (b)). Moreover, presentation of segmented images
yielded better results. For segmented (Fig. 17 (a)) and unsegmented images
(Fig. 17 (b)) the system’s performance smoothly degraded with the number
of simultaneously presented objects.
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Figure 15: Recognition of Single Objects — The figure shows the
recognition performance with respect to (a) object identity and (b) object
pose depending on relative weighting of the feature- and correspondence-based
parts controlled by θ1. This parameter determines the final number of model
candidates that are passed to the correspondence-based verification part. The
best results are annotated to the respective data points. The results were
better for segmented images. Optimal performance was attained by satisfying
the infomax principle and a well-balanced combination of the feature- and
correspondence-based parts.
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(a)

(b)

Figure 16: Input Images of Multiple Objects — The figure shows an
example of (a) a segmented and (b) an unsegmented input image containing
four objects drawn from the COIL-100 database [17]. Backgrounds were
constructed in the same fashion as in the first experiment.

7.1.3 Recognition of Partially Occluded Objects

While in the second experiment the objects were presented in a non-overlap-
ping manner, the third and last experiment is concerned with the recognition
of partially occluded objects with respect to the same weightings of the
feature-based and correspondence-based part as in the first two experiments.
Again, we only evaluated recognition performance with respect to object
identity. The experiment is subdivided into twelve test cases. In the first six
test cases we simultaneously presented two objects where 0-50% of the object
on the left was occluded by the object on the right. Occluded and occluding
objects were different and randomly picked, each object appears at least
once as occluded. In the last six test cases cluttered background was added.
The procedure of background construction and accounting of recognition
responses was the same as in the second experiment. Fig. 18 shows input
images of partially occluded objects, fig. 19 the average recognition rates.

Like in the second experiment, we learn from the results presented in fig. 19
that emphasis of the correspondence-based part improves recognition perfor-
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Figure 17: Recognition of Multiple Objects — The figure shows the
recognition performance with respect to object identity in the case of multi-
ple non-overlapping object; (a) for segmented, (b) for unsegmented images.
Compared to the first experiment, the point of optimal recognition perfor-
mance has considerably moved to the right: correspondence-based verification
is more important in the case of multiple objects, overemphasis, however, led
to a decline. Presentation of segmented images yielded better results. Per-
formance smoothly degraded with the number of simultaneously presented
objects.
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(a) (b)

Figure 18: Input Images of Partially Occluded Object — The figure
shows (a) a segmented and (b) an unsegmented input image of partially
occluded objects. The procedure of background construction was the same as
in the first experiment. In this example, the occluding object covers about
fifty percent of the occluded object.

mance. Again, overemphasis of that part however led to a decline of recogni-
tion performance. Moreover, presentation of segmented images yielded bet-
ter results. For segmented (Fig. 17 (a)) and unsegmented images (Fig. 17 (b))
the system’s performance smoothly degrades with the amount of occlusion.

7.2 Object Categorization

Object categorization experiments were conducted on the ETH-80 image
database [11]. That database contains images of eight categories namely
apples, pears, tomatoes, dogs, horses, cows, cups, and cars of ten identities
per category and 41 images in different poses per identity. The databases
thus consists of 3280 images in total. An interesting question with respect
to object categorization is whether a given hierarchical organization of cate-
gories can be harnessed to improve categorization performance; the question
how such a hierarchical organization is set up is however not addressed here.
We present the results of two experiments. First, we evaluated categoriza-
tion performance if the decision about the final category the object in the
input image is supposed to belong to relies on a given hierarchical organi-
zation of categories. We employ the hierarchy given in fig. 4. Second, we
evaluated categorization performance if no such hierarchy is given.
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Figure 19: Recognition of Partially Occluded Objects — The figure
shows the recognition performance with respect to object identity in the case
of partially occluded objects, (a) for segmented, (b) for unsegmented images.
Like in the second experiment, emphasis of the correspondence-based veri-
fication part improves performance, overemphasis of that part however led
to a decline. Presentation of segmented images yielded better results. The
system’s performance smoothly degraded with the amount of occlusion.
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7.2.1 Categorization of Objects Using Hierarchically Organized
Categories

Results of the first experiment were attained in a leave-one-object-out cross-
validation [41]. This means that the system was trained with the images of
79 objects and tested with the images of one unknown object. We thus
created 80 pairs of learning and testing sets. The learning sets contained
3239, the testing sets 41 images. We hierarchically organized the images
into categories of K = 3 partitionings as given in fig. 4. The threshold
scaling factors θk for selection of salient categories of partitionings Πk with
k ∈ {1, 2, 3} were all set to 0.4 (Eq. (13)). The parameterization of parquet
graph features was the same as in the object recognition experiments. For
Π1 and Π2 we considered an object to be correctly categorized if exactly
one category out of these was selected as salient and the presented object
belongs to that category. For Π3 a set of model candidates was calculated by
intersection of salient categories (Eq. (14)). The model candidates of that set
were passed to the correspondence-based verification part. We considered
the presented object to be correctly categorized if it belonged to the same
category as the object in the model image.

Fig. 20 displays the averaged categorization rates computed within the leave-
one-object-out cross-validation broken down into the original eight cate-
gories of apples, pears, tomatoes, dogs, horses, cows, cups, and cars. Each
data point was averaged over 10 · 41 = 410 single measurements. Gener-
ally, one finds that categorization performance depends considerably on the
sampling of categories. In this sense the system categorizes apples, pears,
and tomatoes well but obviously experiences difficulties in categorizing cows,
dogs, horses, cars, and cups; the intra-category variations among the iden-
tities within these categories are too large. It is thus reasonable to assume
that categorization performance may be improved by adding more learning
examples to those categories. Moreover, the feature-based part’s ability to
unambiguously assign the object contained in the input image to the meta-
categories of partitioning Π1 and Π2 is obviously limited. This deficiency is
especially prominent in the results attained for the categorization of pears,
cars and cups. Due to the imbalance between natural and man-made objects,
the attained results for cars and cups are even worse than those for pears.
The correspondence-based verification part can to some extent compensate
for this shortcoming and greatly improves categorization performance for
apples, pears, tomatoes, cars, and cups. However, the shortage of learning
examples especially in the animal categories can only be fixed by additional
training images.
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Figure 20: Categorization of Objects Using Hierarchically Orga-
nized Categories — The averaged categorization rates computed within the
leave-one-object-out cross-validation are displayed. Each data point was av-
eraged over 410 single measurements. Categorization performance depends
considerably on the sampling of categories. The feature-based part’s ability to
unambiguously assign the object in the input image to the categories of parti-
tionings Π1 and Π2 is obviously limited. For most cases, the correspondence-
based verification part can compensate for this shortcoming, but not for the
shortage of learning examples, especially in the animal categories.

7.2.2 Categorization of Objects Using Single-Element Categories

For evaluation of the system’s performance without predefined hierarchical
organization of categories we arranged the learning set into K = 1 parti-
tioning of single-element categories. We considered the object in the input
image to be correctly categorized if it belonged to the same original cat-
egory of apples, pears, tomatoes, cows, dogs, horses, cars, or cups as the
object in the model image. The attained results depending on θ1 are given
in fig. 21; for clarity the curves are distributed over two subfigures. All other
parameters were the same as above.
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As in the object recognition experiments, a well-balanced combination of
the feature-based and the correspondence-based part allows for optimal cat-
egorization performance. The expectation that categorization performance
would benefit from hierarchical organization of categories could not be sub-
stantiated. In the case of apples, tomatoes, cows, horses, cars, and cups
average categorization performance was considerably better without hierar-
chy; only for pears and dogs categorization could benefit slightly.

The categorization rates are below or close to those presented in [11]. That
object categorization system, however, integrates color, texture, and shape
features while our system only relies on local texture information. At least
the feature-based part of the technique described in this paper can work with
any convenient feature type [38]. One can thus expect to further improve
categorization performance if more feature types become incorporated.

8 Discussion

We have presented an algorithm that employs a combination of rapid feature-
based preselection with self-organized model graph creation and subsequent
correspondence-based verification of model candidates. This hybrid method
outperformed both purely feature-based and purely correspondence-based
approaches.

As an intermediate result the system also produces model graphs, which
are the closest possible representations of a presented object in terms of
memorized features. A variety of further processing can build on these
graphs. The simple graph matching employed here can be replaced by the
more sophisticated methods from [9, 40, 27], which should lead to increased
robustness under shape and pose variations.

In the present state, the method can also be used for initialization of so-
phisticated but slow techniques. For instance, it can produce a coarse pose
estimation followed by refinement through correspondence-field evaluation.
Another promising extension will be to use diagnostics from the classification
process for novelty detection and subsequent autonomous learning.

Much work remains to be done on the categorization capabilities. In our
experiment we have seen that the categories employed by human cognition
were not helpful to improve the categorization capability when employed to
structure the recognition process. It is, however, compatible with experi-
mental results which find that in human perception recognition of a single
object instance precedes categorization [18].
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Figure 21: Categorization of Objects Using Single-Element Cate-
gories — The averaged categorization rates within the leave-one-object-out
cross-validation are displayed. Each data point was averaged over 410 sin-
gle measurements. Optimal categorization performance was achieved for a
well-balanced combination of the feature- and correspondence-based parts. In
most cases categorization performance was clearly better than in the hierar-
chical case.
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Another reason for the relatively poor performance in categorization ex-
periments is that the data is much too sparse to really cover the intra-
category variations. Categorization can always be improved by using addi-
tional cues like color and global shape. This would, however, also require
larger databases, because much more feature combinations would need to
be tested. Nevertheless, the method presented here is well suited to accom-
modate hierarchical categories. Their impact on categorization quality as
well as methods to learn the proper organization of categories from image
data are subject to future studies.
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