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Abstract. Enacting tasks in a workflow cannot always follow a pre-
defined process model. In application domains like disaster management
workflows are partially specified and circumstances of their enactment
change. There exist various approaches for formal workflow models that
are effective in such situations, like declarative specifications instead of
operational models for formalizing flexible workflow process. These pow-
erful models leave a gap to existing techniques in the domain of workflow
modeling, workflow analysis, and workflow management.
In this paper we bridge this gap with a compositional mechanism for
translating declarative workflow models to operational workflow models.
The mechanism is of a general nature and we reveal its principles as
we provide an exemplary definition for translating DecSerFlow models
based on LTL to Petri nets. We then demonstrate its use in analyzing
and refining declarative models.

1 Introduction

The classical notion of a workflow – the automation of a work procedure –
relies on known and predictable circumstances within which it is enacted. A
concrete enactment, a case of a workflow, is based on a fixed set of fully specified
workflow processes, manipulating a certain kind of data and involving a known
set of resources in a certain organizational structure [35]. There are application
scenarios like disaster management where a case’s circumstances are only partly
predictable. Established solutions are insufficient in such a situation.

Research in workflows that addresses this kind of problem has been sub-
sumed under the term ‘change in workflow (management)’. Starting in known
circumstances, any violation of these manifests itself as an observable change in
the workflow’s environment that can be handled accordingly by changing the
workflow as well.

The core of a workflow is the process logic that relates the involved tasks, re-
sources and data to each other. Its formalization is the workflow model [35]. Most
changes in the environment will cause a change in the process logic. The work-
flow model therefore must be able to reflect, support or incorporate changes in a
well-defined way. This involves, among others, three different kinds of change: An
adaptive process can change in order to react on exceptional circumstances like
an unpredicted event, a dynamic process can transform and migrate its cases to
conform with the changed process, and a flexible process can be executed despite
having only incomplete process information [27].
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Problem Description. As each kind of change in workflows is a challenge on its
own, solutions and proposals for solutions use various formalisms [26, 32]; the
desire to achieve a solution within a single formalism needs no justification.

Most of the works mentioned above address dynamic and/or adaptive work-
flow models using Petri nets [23] or graph-based formalizations with concepts
that are similar to Petri nets. The approaches addressing flexible workflows,
Pockets of Flexibility [26] and DecSerFlow [32], use declarative elements to for-
malize (parts of) a flexible process: Constraints on the occurrence of tasks reflect
the work procedure’s minimal requirements on an execution. A concrete ordering
of the tasks, as it must be given in a usual operational model, is determined at
runtime and can be adjusted to the (changed) circumstances.

In contrast to established operational workflow models, predicting the behav-
ior of (even just partly) declarative models is difficult by simple inspection. A
property of interest would be the absence of deadlock and lifelocks in the work-
flow, called weak termination [19]. It is therefore desirable to supplement these
models with analysis techniques. Furthermore, none of the approaches above
covers all aspects of change in a single formalism which makes it difficult to
come up with a dynamic, adaptive, and flexible workflow model.

Contribution. In this paper, we propose a compositional, equivalent translation
of declarative workflow models into operational workflow models. We have cho-
sen Petri nets as our operational workflow model. Their simple concepts and
formal semantics, and the powerful analysis and verification techniques for Petri
net models make them a reasonable candidate [1]. By the compositionality of our
transformation, analysis results of the transformed Petri net model can be re-
lated back to the original declarative model. Hence, we enable Petri net analysis
techniques for declarative workflow models.

Additionally, our transformation makes a first step towards combining exist-
ing techniques for change in workflowsas we may study the relationship between
declarative and operational workflow models on the same terms.

The paper is organized as follows. In Section 2, we present the workflow mod-
els we are concerned with and provide an extended summary on existing works
for change in workflows. We then show in Section 3 our approach of translating
declarative to operational workflow models and provide the arguments for the
correctness of the translation. By the help of a case study we show in Section 4
how the translation can be used to understand, analyze and refine declarative
workflows. We conclude and discuss related works in Section 5.

2 Workflows Models and Change

2.1 Petri Net based Workflows

Petri nets [23, 29] are an established model for workflows [33]. We repeat the
formal definitions and notations we need for this paper.

A inhibitor reset Petri net (IR net for short) N = (P, T, F, I, R) extends the
notion of classical Petri nets [9]: N consists of a finite set P of places, a finite set
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T of transitions (P ∩T = ∅), the flow relation F ⊆ (T ×P )∪ (P ×T ), I ⊆ T ×P
the set of inhibitor arcs, and R ⊆ T ×P the set of reset arcs. In Petri net based
workflows, tasks are modeled as transitions, resources are modeled as places and
the arcs between them denote dependencies between tasks and resources.

For a node x ∈ P ∪ T its preset •x =df {y |(y, x) ∈ F} and postset x• =df

{y | (x, y) ∈ F} denote the direct predecessor and successor in F . The set I(t) is
the set of places tested by transition t; set R(t) is the set of places that is reset
by t.

A marking1 m : P → N is a configuration of N , m(p) denotes the number of
tokens on p in m. p is marked in m if m(p) > 0. A transition t ∈ T is activated
(has concession) in m, iff m ≤ •t and additionally ∀p ∈ I(t) : m(p) = 0. If t
is activated, it may fire which results in the successor marking m′′′, m|t〉m′′′,
computed as follows: m′ = m − •t; for all p ∈ P , m′′(p) = 0 if p ∈ R(t) and
m′′(p) = m′(p) if p 6∈ R(t); and m′′′ = m′′ + t•.

A marked IR net N = (P, T, F, I,R, m0) has an initial marking m0 : P → N.
A firing sequence of N is a sequence 〈t1t2t3 . . . tn〉, ti ∈ T of transitions such that
there exists a sequence of markings m1m2m3 . . . mn of N with ti enabled in mi−1

and mi−1|ti〉mi for all i = 1, . . . , n, denoted m0|t1 . . . tn〉mn. Let R(N) denote
set of all firing sequences of N . Petri net based workflows often have a unique
initial place α ∈ P with m0 = [α] and a set Ω ⊆ P of places that are marked iff
the case has been handled completely [1, 17].

If I = ∅ and R = ∅, N is a place transition Petri net (P/T net for short) and
the well-known equations may be derived. Petri nets have a graphical notation
as bipartite, directed graphs with places drawn as circles and transitions drawn
as boxes, edges are given by F . A black dot within a circle depicts a token on
the respective place. In this paper, a double arrow between two nodes x and y
depicts a loop (x, y), (y, x) ∈ F ; see the nets in Fig. 1 and 2. Reset arcs are drawn
as dashed lines, inhibitor arcs are depicted with a black dot at the transition (cf.
Fig. 9).

2.2 Change in Workflows

Most of the classification schemes for ‘change in workflow (management)’ [31,
16, 27, 25] go along the same lines with emphasis on different aspects. A rather
complete classification scheme is given in [31]. The authors propose six dimen-
sions of change: reason for change, effect of change, affected workflow perspective
(e.g. process or organization), kind of change, allowed moment of change, and
treatment of existing cases under change. The classification is supplemented with
a consideration of errors that may arise under change and how change can be
dealt with.

The aspect we are mostly interest in is change in the process perspective of
a workflow. The classification scheme of Heinl et al [16] did a first discrimina-
tion between loosely specified models and models that must be changed. The

1 We conceive a marking as a multiset and canonically extend ≤, + and − on N to
markings. Ordinary sets of places are conceived as special multisets.
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classification of Sadiq et al [27] extends on this and names three dimensions to
describe the capability of a workflow for behaving under varying circumstances:

– Dynamism: Change of the workflow due to evolution of the real-world process
it is implementing and correct transformation of the workflow’s cases.

– Adaptability : Change of the workflow due to exceptional circumstances like
unexpected events or faults.

– Flexibility : Capability of correctly executing an underspecified workflow to
guarantee correct runs in various or changing environments of the workflow.

Dynamism and Adaptability are properties that actually relate two different
workflows to each other: the original workflow that encounters a change in the
environment and the changed workflow that is compatible with the ‘new’ envi-
ronment. Flexibility aims on covering many different feasible runs in a humanly-
conceivable model.

Each of these dimensions is significant for processes in disaster management:
(1) The actual work procedures as they are performed in disaster management
change for various reasons, like gained experience, change in administrative di-
rectives etc; any workflow system supporting these procedures has to evolve. (2)
Exceptional circumstances for a given workflow are the usual circumstances in
case of a disaster; a feasible workflow system must deal with unpredicted events
and changes. (3) Because unpredictability is inherent in disasters, work proce-
dures that are effective in such situations are loosely or partially specified to
provide the necessary degree of freedom for the change.

It can be seen from the definitions in the previous section that classical Petri
net based workflows lack in supporting change in the process perspective of a
workflow in first place. In the following we focus on flexibility of workflows. But
we assume that neither of the above dimensions can be treated in isolation if we
are interested in dynamic, adaptive and flexible workflows. We therefore give a
brief overview on existing works in that field.

Dynamic and Adaptive Workflows A survey by Rinderle et al [24, 25]
presents a number of existing approaches for dynamic and adaptive workflows.
All approaches mentioned there (Petri net based workflow nets [30], flow nets [11],
workflow net model/workflow sequential model [2], WIDE [5, 6], WASA2 [34],
Adept [22]) follow a graph-based approach to denote a workflow’s tasks and
their ordering. Changes are operations on the graph structure. Their mutual
similarity is not coincidental as graph based approaches are widely used to make
the procedural knowledge of work procedures explicit. Despite being capable
of modeling and sometimes analyzing dynamic and adaptive workflows, each of
these approaches assumes a complete model of the workflow. Unfortunately, in
some application domains like disaster management, such a complete model can-
not be derived as hardly any two executions are the same: existing graph-based
approaches hardly support flexible workflows.

Flexible Workflows Achieving flexibility of a workflow requires a concise rep-
resentation of many behaviors. A simple example is the arbitrary but sequential
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execution of n tasks [27]. An explicit representation of such a workflow gives
rise to n! possible sequences among which one can choose and switch in be-
tween. This exploding representation does not even meet the intention of the
requirement. Finding adequate means for modeling and enacting such behavior
is the challenge. The subsequent sections will present two approaches for flexible
workflows.

2.3 Pockets of Flexibility

Sadiq, Sadiq and Orlowska [26, 27] achieve a compact notion of many behaviors
through an intended underspecification of parts of the process. Confined to the
workflow paradigm, a flexible workflow is given by tasks and their ordering in
a graph-based model. Flexibility is introduced by the concept of a ‘build’ task.
Each ‘build’ task contains a number of workflow fragments. The ordering of
these workflow fragments is left open at design-time; constraints provided by
the modeler restrict the set of valid compositions.

The workflow fragments of a ‘build’ task are brought into a partial order at
runtime when that ‘build’ task is executed. Because the resulting composition
may differ in each execution a ‘build’ task establishes a pocket of flexibility in the
workflow specification. Thus the key idea of this approach is to build a complete
(graph-based) workflow model as the workflow is being executed.

The semantics of their workflow model allows for verifying some properties,
like conflict-freeness, transitivity and redundancy of constraints. A corresponding
engine to execute this kind of workflows has been implemented by Sadiq et al.
The authors also provide ideas how their approach can be extended towards
adaptivity and dynamism. [27]

2.4 Declarative Service Flow Language

Compared to the ‘pockets of flexibility’, Aalst and Pesic [32] went a step further
by modeling a workflow’s behavior entirely in temporal-logic constraints over its
tasks. The constraints are formalized in a subset of linear-time temporal logic
(LTL). Any sequential ordering of finitely many, (possibly repeated) occurrences
of the workflow’s tasks (i.e. any path) that satisfies such an LTL formula is a
run of the workflow. In this sense, anything may happen as long as the final run
satisfies all constraints. The idea is to let the modeler specify the constraints of
the process to be supported rather than a solution in operational semantics. We
briefly remember syntax and semantics of LTL and then present its application
to specify workflow behavior.

Linear-Time Temporal Logic (LTL) LTL is a modal logic that allows to
specify the future of paths in terms of a set Prop of atomic propositions. The set
FLTL(Prop) of LTL formulas is the least set containing the atomic proposition
Prop and that is closed under boolean connectives, the unary temporal operators
© (next), ¤ (always), ♦ (eventually) and the binary operator U (until). [21, 12]
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A path, is an infinite sequence of interpretations of the propositions: r :
N → 2Prop; each position i ∈ N of r is conceived as a state. An LTL formula
φ ∈ FLTL(Prop) is evaluated at a state i ∈ N of a path r:

r, i |= p ∈ Prop iff p ∈ r(i),
r, i |= © φ iff r, i + 1 |= φ,
r, i |= ¤ φ iff ∀j ≥ i : r, j |= φ,
r, i |= ♦ φ iff ∃k ≥ i : r, k |= φ,
r, i |= [φ U φ′] iff ∃k ≥ i : r, k |= φ′ ∧ ∀i ≤ j < k : r, j |= φ,

and boolean connectives are evaluated as usual. Path r is a model for φ ∈
FLTL(Prop), r |= φ, iff r, 0 |= φ. For a finite prefix r|{1,...,n} of a path, the
definition of |= can be adapted by restricting states and quantifiers to {1, . . . , n}.

LTL for Workflows Aalst and Pesic have chosen a special subset of LTL to sup-
port workflows. A declarative workflow D = (TasksD, φD) has a set TasksD of
atomic tasks that may be enacted in D. The LTL formula φD ∈ FLTL(Prop(D))
restricts the occurrences of these tasks. For this purpose, the set of atomic propo-
sitions Prop(D) has a special shape: Prop(D) =df {activity = A | A ∈ TasksD}.
If activity = A holds in a state, the interpretation is, that this state is left
by enacting task A. Therefore, a path r : N → 2Prop(D) is feasible for D if
∀i : |r(i)| ≤ 1. The behavior that is specified by D is the set of feasible runs
satisfying φD, R(D) =df {r |= φD | r is feasible}.

The nature of FLTL(Prop(D)) is still too general to derive properties for
R(D) that are useful in the workflow domain. Aalst and Pesic defined a set
FWF of parameterized LTL constraint templates as the basic building blocks
of the declarative service flow language (DecSerFlow) [32]. By instantiating
the templates, one obtains a set FWF(D) ⊆ FLTL(Prop(D)) of LTL work-
flow constraints. A DecSerFlow workflow (DSF workflow for short) is a declar-
ative workflow D where φD =

∧n
i=1 φi is a conjunction of workflow constraints,

φi ∈ FWF(D), i = 1, . . . , n.
The constraints include the existence, absence, or counted occurrence of a

task in a run; positive constraints on the occurrence of two tasks like ‘task A
requires a preceding B’; and negative constraints like ‘A and B are mutually
exclusive’. Each constraint comes with a graphical representation which allows a
declarative specification without looking into LTL formulas. Using LTL as their
model, adding further templates to FWF is feasible.

To enact a DSF workflow D, the authors suggest the translation of the LTL
formula φD to a Büchi automaton [7] which serves as the basis for the workflow in
the corresponding engine. This approach is well studied and yields an equivalent
operational model for each declarative workflow [13]. The setting of infinite paths
for LTL and Büchi automata can be tailored to the setting of finite paths for
workflows on a technical level, see [32] for the details. The authors mention that,
despite these results, “the automatic construction of an automaton suitable for
enactment and on-the-fly monitoring is far from trivial” [32, chap.5].
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Relation to ‘Pockets of Flexibility’ The principle idea for achieving flex-
ibility in DecSerFlow and in the model of Sadiq et al is the ordering of a set
of unordered tasks under constraints at runtime. The constraints in either ap-
proach are similar or even the same. We therefore think, without wanting to
prove this here, that a ‘build’ task can be conceived as a DSF workflow within
an operational model. For this reason, and because DecSerFlow has with LTL a
more general and formally well-defined model, we take DecSerFlow as the basis
for our translation.

3 Translating Declarative Workflow to Operational
Workflows

In this section we present our idea for translating declarative workflows to oper-
ational workflows. As justified in Sections 1 and 2.4, we have chosen DecSerFlow
as our declarative model while the operational model will be Petri nets. This
translation does not require any properties that are inherent to these formalisms;
they serve as mere representatives for either domain. The aim of this section is
to reveal the basic ideas that are involved in such a translation rather than a
complete translation of DecSerFlow.

We proceed as follows. We present some of the DecSerFlow constraint tem-
plates and explain our approach for a translation into Petri nets. The choice for
the templates to be presented here is guided by our case study in Section 4. We
explain the decisive arguments for correctness as we proceed in the presentation.

3.1 Approach for Translating

For the remainder of this paper, let D = (TasksD, φD) be a DSF workflow.
The aim of our translation is to obtain a Petri net N(D) such that every firing
sequence of N(D) can be mapped to a run of φD and vice versa.

Our translation approach has been exercised before, e.g [17]; it is intensional:
for each construct of DecSerFlow we analyze its effects on the paths of the
system. We then search for a Petri net construct that achieves the same effect.
Our translation makes no use of the inner structure of LTL formulas, but their
formal foundation makes them extensionally well-defined. We translate each of
DecSerFlow’s language concepts to a Petri net pattern or an operation on Petri
nets as follows:

– The notion of a task A ∈ TasksD is translated into a dedicated pattern,
– we define a pattern to model the acceptance of finite paths, and
– we define a parameterized Petri net pattern N(ψ) for each of the parame-

terized constraint templates ψ ∈ FWF.
– Instantiating parameters x to values v of a constraint template ψ to a con-

straint φ = ψ[x 7→ v] ∈ FWF(D) is translated as instantiation of the Petri
net pattern N(ψ) to a constraint net N(φ) = N(ψ)[x 7→ v].

– A conjunction of two constraints is translated as ‘merging’ of the correspond-
ing constraint nets, which will be formally the union of the nets.

7



The intriguing part in this approach is a mismatch between models of an LTL
formula and firing sequences of a Petri net which we will discuss first before
going into details.

Being an LTL formula, the model of a DecSerFlow constraint φ ∈ FWF(D)
is the set R(φ) of all infinite paths that satisfy φ. Paths in R(φ) also make state-
ments about occurrences of activities that are not mentioned in φ as R(φ) is built
using all atomic propositions in Prop(D) = {activity = A | A ∈ TasksD}. The
firing sequences in R(N) make statements about transition of N only. We solve
this mismatch by examining the DSF workflow D> =df (TasksD,>) that does
not constrain the occurrences of its tasks. R(D>) is the space (N → 2Prop(D)).
The Petri net that exhibits the same behavior contains a transition taskA for
every task A ∈ Task(D) and a marked place preA that is in the pre- and post-set
of tA, see net NA in Fig. 1. This net will be the canvas for our construction.

task A
pre A

Fig. 1. Basic Petri net pattern NA

for the occurrence of task A, pa-
rameter: A.

end
finish

Fig. 2. Petri net pattern Nend to
denote the end of a run.

When modeling workflows, we are interested in finite executions only. More
precisely, after finitely many steps, it must be possible to decide whether a path
or the firing sequence is a model for φD. We only then may stop enacting activ-
ities. In a Petri net model satisfiability is checked operationally via activating
or not activating a transition. We have chosen the end transition of net Nend in
Fig. 2 to perform this check: our construction will introduce pre-places of end
that are marked only if a corresponding constraint has been satisfied. A token
on end’s post-place finish denotes an accepting state where all constraints have
been satisfied. We include the pattern in our canvas ND(>):

ND(>) =df

⋃

act∈Tasks(D)

NA[A 7→ act] ∪Nend (1)

Observe that the firing sequences of ND(>) correspond to the runs of D>.
We can now formalize the translation procedure from D to N(D). Merging

two IR Petri nets N1 and N2 yields the IR Petri net

N1 ./ N2 =df (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2, I1 ∪ I2, R1 ∪R2,m
0
1 + m0

2). (2)

./ is associative and commutative. Merging ND(>) with a constraint net that
contains transitions and places of ND(>) reduces the set of firing sequences just
as conjoining > with a constraint on Task(D) reduces the set of satisfied runs.

The DSF workflow D = (TasksD, φD) can be conceived as the conjunction
of instantiated constraint templates: φD =

∧n
i=1 φi with φi = ψi[xi 7→ vi], ψi ∈

FWF, i = 1, . . . , n.
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We have chosen to generate the Petri net workflow N(D) from this inner
structure of D. Assume a Petri net N(ψi) for each ψi ∈ FWF. For i = 1, . . . , n
we define ξi =df ξi−1 ∧ φi, with ξ0 =df >, and

ND(ξi) =df ND(ξi−1) ./ N(ψi)[xi 7→ vi]. (3)

We define N(D) =df ND(φD) = ND(ξn) to be the result of our translation. An
accepting firing sequence of N(D) leads to a marking m with m(finish) > 0. The
translation yields an equivalent net N(D) iff every path of D can be mapped to
an accepting firing sequence of N(D) and vice versa.

The design challenge for the constraint nets N(ψi) is to chose the net’s ele-
ments in such a way that the merge operation does restrict the behavior only wrt
ψi. We exemplary demonstrate the ideas for constructing equivalent constraint
nets for two constraint templates.

3.2 Constructing Constraint Nets

DecSerFlow contains a set of constraints to restrict the number of occurrences
of a task in a run [32]. The most basic constraint requires that a task A has to
occur in a run: ex(A) =df (♦ activity = A). By the help of the ‘next’ operator
© one can count occurrences of tasks. The formula ♦ (activity = A∧© ex(A))
evaluates to true if task A has occurred twice (or more often). Its negation
evaluates to true if A has occurred at most once. In this style, DecSerFlow
provides a parameterized constraint template exj

i (A) that evaluates to true if
task A has occurred at least i times and at most j times.

The corresponding constraint net is depicted in Figure 3. Firing of transition
taskA is bounded by the number i of tokens in its pre-place Amax. For each firing
of taskA, a token on its post-place Aexecuted is produced. Thus transition end is
enabled only if taskA has fired at least j times.

In order to guarantee that taskA can fire at most i times, merging with any
other instantiated constraint net must not result in a net that consumes or
produces token on Amax. All other constraint nets have to be defined in such a
way. Otherwise, a constraint net N(ψ) would not restrict the behavior of the
system only wrt. the template ψ ∈ FWF.

i
j

Fig. 3. Petri net pattern
N(exj

i (A)); task A occurs at
least i times and at most j times.

Fig. 4. Petri net pattern
N(precedence2({A1, A2}, B)); task B
is preceded by task A1 or task A2.
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DecSerFlow provides a number of constraint templates to order the occur-
rences of two (or more) different tasks. Our second example constraint requires
that before any execution of task B, task A has to occur: precedence(A,B) =df

ex(B) → [(¬activity = B) U activity = A]. This can be generalized to an al-
ternative precedence of two or more tasks: precedencek({A1, . . . , Ak}, B) =df

ex(B) → [(¬activity = B) U ∨k
i=1 activity = Ai]

The constraint net for the generalized precedence (with k = 2) is depicted in
Fig. 4. Transition taskB is prevent from firing through adding an empty pre-place
preA1,A2

B . By making preA1,A2
B post-place of taskA1 and taskA2 , their firing enables

taskB . Observe that firing taskB does not remove the token from preA1,A2
B ; this

is necessary to realize all runs of precedence2({A1, A2}, B) in the constraint net.
Consider the following DSF workflow D3 = ({receive, hotel, airline}, φ3) with

φ3 = ex1
1(receive) ∧ ex1(hotel)

∧precedence(receive, hotel) ∧ precedence(receive, airline) (4)

By instantiating and merging the patterns of Figures 3 and 4 according to (3)
on our canvas ND3(>) we obtain the Petri net N(D3) depicted in Fig. 5.

task receive

end

task hotel task airline

receive max

receive

executed

pre receive

finish

pre hotel

from receive

pre airline

from receive

hotel

executed

pre hotel pre airline

Fig. 5. Petri net N(D3) corresponding to specification (4) generated by instantiating
and merging the patterns of Fig. 3 and Fig. 4 according to (3).

Observe that the firing sequence 〈taskreceive, taskhotel, end〉 reaches an accept-
ing state in which every constraint is satisfied. Further, from this state on
taskairline and taskhotel may fire infinitely often. This firing does not violate any of
the constraints and is therefore a run of D3. The simplicity of our construction
comes at the price of an unbounded net.

3.3 More Complex Patterns

We will now briefly present the remaining constraint templates that we want to
use in this paper and their corresponding constraint nets.
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The constraint notResponse(A, B) disallows any occurrence of B after an oc-
currence of A. Formally notResponse(A, B) = ¤ (activity = A → (¤ ¬activity =
B)). The net N(notResponse(A,B)) is depicted in Fig. 6; the firing of taskB is
prohibited by the inhibitor arc once the post-place of taskA is marked.

A more generalized variant of notRespose requires that tasks A and B must
not occur in the same run. Its formal definition in LTL is notCoExistence(A,B) =df

((♦ activity = A) → (¤ ¬activity = B))∧ ((♦ activity = B) → (¤ ¬activity =
A)). The firing sequences of N(notCoExistence(A, B)) in Fig. 7 are correct and
complete wrt this property: Firing of taskA produces a token on executedat B

A

which prohibits the firing of taskB because of the inhibitor arc. Similarly for
taskB . Place serializeB

A prevents the simultaneous firing of both transitions.
The similarity of N(notCoExistence(A,B)) and N(notResponse(A,B)) is in-

evitable: notCoExistence(A,B) is extensionally equivalent to notResponse(A,B)∧
notResponse(B, A).

Fig. 6. Petri net pattern
N(notResponse(A, B))

Fig. 7. Petri net pattern
N(notCoExistence(A, B))

To require that in every run task A or task B (or both) have to occur, use
mutualSubst(A,B) =df ♦ (activity = A ∨ activity = B). Fig. 8 shows the Petri
net pattern where firing of end is subject to a preceding firing of taskA or taskB .

Fig. 8. Petri net pattern
N(mutualSubst(A, B))

Fig. 9. Petri net pattern
N(response2(A, {B1, B2}))

A quite powerful, but in its effects underestimateable, constraint specifies
that after the execution of task A one more more tasks B1, . . . , Bk have to occur:
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responsek(A, {B1, . . . , Bk}) =df ¤ (activity = A → (♦
∨k

i=1 activity = Bi). In
Fig. 9 we depict the corresponding net N(response2(A, {B1, B2})). Firing taskA

creates the commitment that its post-place has to be cleared from any tokens
before end may fire to reach an accepting state. Because of the reset arc from
either of the taskBi to that place, firing any of taskBi fulfils that commitment.

3.4 P/T Patterns

The patterns presented in the previous sections are a rather straight operational
model for the DecSerFlow constraint templates. Some patterns require the more
advanced Petri net concepts of inhibitor and reset-arcs (see Figures 6, 7, 9).
The use of these arcs may turn into a disadvantage if it comes to analyzing the
constructed Petri net. Most of the analysis techniques for Petri nets are defined
for plain P/T nets (e.g. [23, 29, 28]). Translating IR-nets to P/T nets would not
be an issue if our nets were bounded [29]; unfortunately our constraint nets do
not enjoy this property.

We therefore provide a P/T net pattern N ′(ψ) that is branching bisimilar
to the IR net pattern N(ψ) for each constraint template ψ ∈ FWF if any newly
added transition in the P/T net is made invisible.

Two Petri nets N1 and N2 are branching bisimilar by the symmetric relation
∼⊆ M(P1) ×M(P2) iff m0

1 ∼ m0
2 and for every pair of markings m1 ∼ m2

and m1|t〉m′
1 implies that either t is invisible and m′

1 ∼ m2 or there exists
m′

2 ∈M(P2) with m2|t1 . . . tkt〉m′
2, t1 . . . tk ∈ T2 invisible, and m′

1 ∼ m′
2. [20]

Subsequently, we present the P/T patterns for notResponse, notCoExistence,
and response together with the proof arguments for branching bisimilarity to the
IR patterns.

notResponse. To realize notResponse(A, B) in a P/T net, the firing of taskA must
imply that taskB has no concession anymore. Because N ′(notResponse(A,B))
must not bound the number of occurrences of taskA, the concession cannot be
removed by consuming a token from •taskB when taskA fires. We therefore have
chosen to add an invisible transition chooseA that implements the choice to
execute A. It removes the concession for taskB and gives it to taskA as soon
as all other preconditions for firing taskA are met. The constraint net pattern
N ′(notResponse(A,B)) is depicted in Fig. 10.

The place pre?
A is a parameter by itself and stands for the set {prex

A | ∃y :
prey

A ∈ •taskA∧y = x} of places in the final composed net (for a chosen valuation
of A). This set will contain any unmarked place in •taskA that needs to be
marked to enable taskA, cf. the IR net patterns in the previous sections. By
making the firing of chooseA dependent on this set of places, we guarantee that
taskB looses its concession in the final P/T net iff it looses its concession in
the final IR net. Enabling taskA depends on an invisible transition only. Hence
replacing N(notResponse(A,B)) by N ′(notResponse(A,B)) in the construction
process results in a branching bisimilar net. Using pre?

A requires a final step in
the construction of the Petri net workflow, we call resolving, after all constraint
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task B

task A

choose A

B check A

executed

pre A *

A chosen

Fig. 10. P/T net:
N ′(notResponse(A, B))

choose A choose B

task A task B

A xor B

pre A *

A chosen

pre B *

B chosen

Fig. 11. P/T pattern: notCoExistence(A, B)

nets have been merged. The procedure will be formalized subsequently; for the
moment, Fig. 12 illustrates the matter.

N :

choose Atask A

pre A *pre A pre A from B

A chosen

Res(N):

choose Atask A

pre A pre A from B

A chosen

Fig. 12. Resolving place pre?
A in net N yields the net Res(N).

In N ′(notResponse(A,B)), the transition chooseA is not parameterized with
the name of task B. This is necessary as the choice to execute A has to be made
globally. A set of local conflicting choices could otherwise lead to a deadlock if
not each local choice is solved in favor of the same transition. This phenomenon
is called non-local choice [15]. Any other pattern that ‘decides’ to fire A before
A does fire has to use transition chooseA to solve any such conflict; our merge
operator ./ then makes the choice global.

notCoExistence. As mentioned in Sect. 3.3, the constraint notCoExistence(A, B)
is extensionally equivalent to notResponse(A,B) ∧ notResponse(B,A). The net
N ′(notCoExistence(A, B)) therefore uses the same constructs as N ′(notResponse(A,B))
to prevent firing of taskB as soon as pre?

A is marked and vice versa, cf. Fig. 11.
Because occurrences of taskA and taskB are mutually exclusive according to
the LTL constraint, the choice for either task is made nonreversible by re-
moving the token from place xorBA . Branching bisimilarity to the IR pattern
N(notCoExistence(A,B)) follows.
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response. The constraint responsek(A, {B1, . . . , Bk}) =df ¤ (activity = A →
(♦

∨k
i=1 activity = Bi) has proven to be particularly difficult to implement in a

P/T net. The intriguing part is that each occurrence of A requires a subsequent
occurrence of a Bi. The necessary bookkeeping in the IR net was facilitated by
the reset arc. The P/T net solution has to differentiate between: (a) neither
A nor Bi has fired, (b) A has fired, Bi has not yet fired, (c) A has fired and
subsequently Bi has fired, and (d) Bi has fired without a (directly) preceding A.
These cases are encoded by markings of N ′(response2(A, {B1, B2})) in Fig. 13
as follows.

task A

task B1

end

t1 A,B1,B2

t3 A,B1,B2

task B2
p6 A,B1,B2

p5 A,B1,B2

p1 A,B1,B2

p2 A,B1,B2
p3 A,B1,B2

t2 A,B1,B2

p4 A,B1,B2

t4 A,B1,B2

Fig. 13. P/T pattern: response(A, {B1, B2}).

– case (a): marking m1 = [p1
A,B1,B2 , p3

A,B1,B2 , p6
A,B1,B2 ],

– case (b): marking m2 = [p2
A,B1,B2 , p3

A,B1,B2 , p6
A,B1,B2 ]

or m′
2 = [p1

A,B1,B2 , p4
A,B1,B2 , p6

A,B1,B2 ]
or m′′

2 = [p2
A,B1,B2 , p4

A,B1,B2 , p6
A,B1,B2 ],

– case (c): marking m3 = [p1
A,B1,B2 , p4

A,B1,B2 , p5
A,B1,B2 ],

– case (d): marking m4 = [p1
A,B1,B2 , p3

A,B1,B2 , p5
A,B1,B2 ].

Firing taskA in m1 leads to m2 and m′
2, any subsequent firing of taskA in

m′
2 leads to m′′

2 and back to m′
2. Firing taskBi in m′

2 leads to m3 and then to
m1; firing taskBi

in m1 leads to m4 and m1. Hence the interpretation of the
markings is sound. taskA is disabled in m3 and m4, taskBi

is disabled in m2

and m′′
2 . This guarantees that in N ′(response2(A, {B1, B2})), only the markings

m1, . . . , m4 are reachable. Finally, end is enabled in m1 only, hence the accepting
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state is reachable only if the constraint is satisfied. Thus the pattern is correct.
Since occurrences of the tasks are not restricted, N ′(response2(A, {B1, B2})) is
branching bisimilar to N(response2(A, {B1, B2})).
Resolving pre?

A in P/T nets. The P/T net patterns N ′(notResponse(A,B)) and
N ′(notCoExistence(A,B)), defined in the previous section, contain the parame-
terized place pre?

A that needs to be resolved to the set Res(pre?
A) =df {prex

A | ∃x :
prex

A ∈ •taskA} in the resulting Petri net workflow N(φD). Resolving means
that each pre-transition (and each post-transition) of the place pre?

A becomes
a pre-transition (post-transition, respectively) of p ∈ Res(pre?

A); finally pre?
A is

removed from the resolved net.
We lift the Res operator to the level of P/T net N = (P, T, F, m) with

Pre(N) = {pre?
A ∈ P | taskA ∈ T}:

– Res(P ) =df P \ Pre(N),
– Res(T ) =df T ,
– Res(F ) =df {(x, y) ∈ F |x, y ∈ Res(P ) ∪Res(T )}
∪ {(p, t) | (pre?

A, t) ∈ F, pre?
A ∈ Pre(N), p ∈ Res(pre?

A)}
∪ {(t, p) | (t, pre?

A) ∈ F, pre?
A ∈ Pre(N), p ∈ Res(pre?

A)},
– Res(m)(p) =df m(p) if p ∈ Res(p) and Res(m)(p) =df 0 otherwise,
– Res(N) =df (Res(P ), Res(T ), Res(F ), Res(m)).

The set of P/T nets is closed under Res(.), and Res(.) is idempotent for P/T
nets.

Translating DSF workflows to P/T Nets. With the new P/T net patterns, we
need to adapt our translation (3). Let N ′(ψ) =df N(ψ) for each constraint
template ψ ∈ FWF for which we have not defined N ′(ψ) yet. Given D =
(TasksD, φD), structured as in Sect. 3.1 by φD =

∧n
i=1 ψi[xi 7→ vi], we define

for i = 1, . . . , n, ξi =df ξi−1 ∧ (ψi[xi 7→ vi]) with ξ0 = >, and

N ′
D(ξi) =df N ′

D(ξi−1) ./ N ′(ψi)[xi 7→ vi]. (5)

We set N ′(D) =df Res(ND(φD)) = Res(ND(ξn)) to be the result of our trans-
lation into P/T nets.

4 A small Case Study

To validate our approach we performed a small case study with the unavoidable
ACME travel workflow. We analyzed the DecSerFlow variant of this standard
example [32]. Fig. 14 shows the textual representation of the DSF workflow
Dtravel = (Taskstr, φtr):

We implemented a tool that reads a textual specification of a DSF workflow
as in Fig. 14, looks up the corresponding Petri net pattern in a library, and
depending on the chosen Petri net type, generates an IR net based on (3) or
a P/T net based on (5). The patterns are stored in PNML format [4], output
of the tool is PNML as well. The result of the translating Dtravel to IR nets
(laid out manually and structurally reduced by removing redundant places like
prereceive) is depicted in Fig. 15.
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Tasktr = {receive, hotel, bookedHotel, failedHotel, airline, bookedAirline, failedAirline,
creditCard, notifyBooked, compensation, notifyFailure}

φtr = ex1
1(receive) ∧ precedence(receive, hotel) ∧ precedence(receive, airline)

∧response(receive, hotel) ∧ response(receive, airline)

∧precedence(hotel, bookedHotel) ∧ precedence(hotel, failedHotel)
∧response2(hotel, {bookedHotel, failedHotel})
∧precedence(airline, bookedAirline) ∧ precedence(airline, failedAirline)
∧response2(airline, {bookedAirline, failedAirline})
∧precedence(bookedHotel, creditCard) ∧ precedence(bookedAirline, creditCard)
∧ex1

0(creditCard) ∧ notResponse(creditCard, hotel) ∧ notResponse(creditCard, airline)

∧precedence(creditCard, notifyBooked) ∧ response(creditCard, notifyBooked)
∧ex1

0(notifyBooked)

∧precedence2({failedHotel, failedAirline}, compensation) ∧ ex1
0(compensation)

∧notResponse(compensation, hotel) ∧ notResponse(compensation, airline)

∧precedence(compensation, notifyFailure) ∧ ex1
0(notifyFailure)

∧notCoExistence(creditCard, notifyFailure) ∧mutualSubst(creditCard, notifyFailure)

Fig. 14. DecSerFlow specification of the ACME travel workflow

Analysis. We used the P/T net N ′(Dtravel), containing 74 places and 35 transi-
tions and therefore not being shown here, for an analysis with Petri net based
tools. Verifying that the generated net is weakly terminating (reaching a mark-
ing with a token in finish is always possible) [19] with the CTL model checker
LoLA [28] revealed a life-lock in N ′(Dtravel) that is caused by the firing sequence

〈receive, hotel, failedHotel, compensation, notifyFailure〉.
Because our IR and P/T net patterns are branching bisimilar, and therefore
equivalent wrt CTL∗-X properties [20], the same firing-sequence also causes
a life-lock in N(Dtravel): In this life-lock bookedHotel and failedHotel may fire
infinitely often. Transition end has no concession because pendingairline is still
marked while disallowsairline contains a token which blocks airline.

Our mechanism is equivalent to the Büchi automata translation in the sense
that both models include the non-accepting executions of the LTL specifiation.
We have such a case here: The life-lock is a non-accepting firing sequence of
N ′(Dtravel). However, the safety properties in φtr cannot prevent a non-accepting
execution due to violated lifeness properties if one bases the choice of the next
task on the current state only. Therefore Dtravel specifies a not weakly terminat-
ing system.

Exploiting our compositional approach, we performed backwards analysis on
the involved places and transitions and identified the involved constraints. The
life-lock is caused by response(receive, airline) and notResponse(compensation, airline):
The problem with Dtravel is, that for compensation to occur only one of airline and
hotel need to be executed beforehand. The occurrence of the former task blocks
the latter two tasks. But the occurrence of receive must be followed by airline and
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Fig. 15. Translated ACME travel workflow

hotel. Thus in any accepting execution, of Dtravel, occurrence of compensation
must be preceded by hotel and airline.

One may argue that this logical property can be deduced by careful inspec-
tion of the LTL constraints or application of a theorem prover. But one needs to
know the property to be deduced beforehand, to see if it can be deduced. In con-
trast, for identifying unknown problems of a system, as exercised here, standard
techniques for operational models are applicable [10]. In this sense, identifying
an unsafe underspecification of the DSF workflow was greatly simplified through
its equivalent operational Petri net model.

We can think of two solutions to complete the specification. We could ex-
plicitly require that compensation is preceded by hotel and airline. We prefer to
allow compensation as an alternative response to receive: We refine Dtravel and
use response2(receive, {airline, compensation}) instead of response(receive, airline)
(and response2(receive, {hotel, compensation}) instead of response(receive, hotel)
for symmetry reasons) in the specification, let D2

travel denote the refined work-
flow.

We can see from N(response2(A, {B1, B2}) in Fig. 9 that this results in ex-
tending N(Dtravel) of Fig. 15 with reset arcs (compensation, pendingairline) and
(compensation, pendinghotel). Model-checking N ′(D2

travel) verifies the soundness
of D2

travel: the refined workflow can always terminate.
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5 Conclusion

We presented a compositional mechanism to synthesize a Petri net from a LTL
specification for flexible workflows. The synthesized Petri net contains the intu-
ition of the LTL specification. Further, it equivalently implements the specifi-
cation in the sense that each path satisfying the specification corresponds to a
firing sequence of the Petri net that leads to an accepting marking and vice versa.
The synthesizing translation is compositional: each constraint is translated to a
Petri net pattern; conjoining constraints translates to merging the corresponding
nets. A key aspect for the equivalence of the synthesized Petri net is our ‘canvas’
that implements the empty specification.

The mechanism can synthesize specifications being conjunctions of known
constraints only as the mapping to a Petri net is based on the intention of
the constraint and not on the structure of its LTL formula. We have shown that
through the compositionality of our mechanism, analysis results performed at the
Petri net level can be translated back to the LTL formula. Further, our approach
preserves the logical structure of the workflow as the resulting Petri net reflects
an understandable process model. Therefore applying Petri net specific analysis
techniques like invariants, siphons and traps [29] can provide information about
the workflow itself. This property makes our approach superior in the workflow
domain compared to standard translations like the the generation of a Büchi
automaton.

Related Works. The synthesis of Petri nets from specifications involving log-
ics is for instance studied in the field of ‘controller synthesis’. Yet the setting
differs as an existing system shall be controlled to meet the specification which
does not correspond to our setting. We are not aware of any general translation
mechanisms from LTL formulas (or other declarative formalisms) to Petri nets.
More importantly, we think that even if such a mechanism existed, the resulting
Petri net would present as much intuition of the system as a synthesized Büchi
automaton.

In the context of workflows and business processes our work relates to [18]
where the behavior of a workflow process is restricted by constraints. Formally
this is done by merging a Petri net workflow model with Petri nets implementing
the constraints. Our approach is more general as we don’t require an existing
Petri net; further the constraints considered in either work are different. Another
approach is a logic to specify contracts over sets of web services [8] where we
differ in applying established formalisms like LTL and Petri nets.

Future Work. Open problems in our approach are an automated translation of
analysis results in the operational model back to the declarative model. Further-
more, a less manual approach in deriving the Petri net patterns from LTL con-
straints would be desirable to address the extensibility of DecSerFlow. Besides
real-world case studies from application domains like disaster management, it is
certainly necessary to consider open systems that communicate with their envi-
ronment. A candidate logic would be alternating-time temporal logic (ATL) [3]
that allows the synthesis of a finitely representable operational model [14].
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