
Empirical Studies in End-User Software Engineering and
Viewing Scientific Programmers as End-Users

-- POSITION STATEMENT --

Jeffrey Carver
Mississippi State University

carver@cse.msstate.edu

Abstract

My work has two relationships with End User

Software Engineering. First, as an Empirical Software
Engineer, I am interested in meeting with people who
do research into techniques for improving end-user
software engineering. All of these techniques need to
have some type of empirical validation. In many cases
this validation is performed by the researcher, but in
other cases it is not. Regardless, an independent
validation of a new approach is vital. Second, an area
where I have done a fair amount of work is in software
engineering for scientific software (typically written
for a parallel supercomputer). These programmers are
typically scientists who have little or no training in
formal software engineering. Yet, to accomplish their
work, they often write very complex simulation and
computation software. I believe these programmers
are a unique class of End-Users that must be
addressed

1. Introduction

In this position paper, I will address work in two
main areas related to End-User Software Engineering.
The first area, discussed in Section 2, is related to the
need for and use of empirical studies in End-User
Software Engineering. This section provides the
motivation for performing empirical studies, an
overview of the types of studies that can be useful, and
an example from my own experience.

The second area, discussed in Section 3, is related
to a class of users who are not always considered in the
discussion of End-User Software Engineering, the
scientists and engineers. I argue that these users are not
professional programmers, but rather they are a special
class of End-Users that deserve unique attention and
research.

2. Empirical Studies

The use of empirical studies is necessary in End-

User Software Engineering for the same reasons that it
is necessary in more traditional software engineering.
An empirical study provides a researcher with the hard
data necessary to make informed decisions, rather they
relying only on hype or argumentation. Different types
of empirical studies provide different types of
evidence. Choosing the appropriate study and the
appropriate evidence is important based on the goal of
the research inquiry.

There are two main types of empirical studies that
can be of use in this domain. Studies that are more
exploratory and studies that are more confirmatory. In
an exploratory study, the goal of the researcher is to
understand the environment. This understanding could
provide insight into identification of requirements for a
new tool or interface or identification of necessary
improvements in an existing interface. By gathering
information about how the target users perform the
task, the researcher can better understand the type of
interface or tool that will best serve them. In addition,
by observing users who are working with an existing
interface or tool, researchers can understand how that
tool or interface can be improved.

Software Engineering researchers have been doing
these types of studies for a long time. Our studies
focus on professional developers rather than end-users.
And, our goals are typically to better understand or
improve particular aspects of the software engineering
process. But, the approaches used in study design and
data analysis are similar to what is needed in the end-
user domain [3, 6].

One important aspect of empirical studies that I
believe I can offer to members of the EUSE
community is independence and objectivity. One
benefit of being independent, that is, not developing
the end-user technologies myself, is that I have no

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1079

vested interest in the outcome. One danger of a
researcher performing empirical validation on his or
her own tools or interfaces is that positive results are
viewed with some skepticism. Studies conducted by an
objective third party will lend additional validity to the
results.

My experience in this domain comes from
performing a series of experiments on the WYSIWYT
prototype in Excel [7, 8]. In our study, we were
interested in evaluating the use of WYSIWYT within
the Excel environment to understand how the results
from the Forms/3 environment translated. The goal of
the study was to determine whether people would
create a more correct, more tested spreadsheet when
using WYSIWYT than they would when using the
normal facilities provided by Excel [1].

In this study, the subjects were given the task of
creating a spreadsheet based on a provided
specification. They were instructed that their goal was
to make the spreadsheet as correct as possible. The
subjects were students in the Business Technology
department at Mississippi State University who were
taking a course on Spreadsheets. Therefore, they were
representative of novice spreadsheet users, which is an
interesting population for this study. The results of the
study indicated that, while the WYSIWYT add-in did
not improve overall correctness, it did decrease the
amount of time required to reach the same level of
correctness.

3. Scientists and Engineers as End-Users

High performance computing systems are used to

develop software in a wide variety of domains
including nuclear physics, crash simulation, satellite
data processing, fluid dynamics, climate modeling,
bioinformatics, and financial modeling. The TOP500
website (http://www.top500.org) lists the top 500 high
performance computing systems. The diversity of
government, scientific, and commercial organizations
present on this list illustrates the growing prevalence
and impact of HPC applications on modern society.
These software systems are largely developed by
experts in the scientific or engineering domain that is
being modeled. Therefore, they have little or no
training in formal software engineering.

This class of developers should be considered as a
special type of end-users for the following reasons.
First, they lack training in formal software engineering

and often lack the interest in following correct
software engineering principles. Second, for these
developers, the production of software is a secondary
goal. Their main interest is the science or engineering.
To accomplish their goal, they must often write
simulation code or computation code. While this code
may often be shared and used by others, it is not the
end goal of their work [2, 4, 5].

4. References

[1] Carver, J., Fisher II, M., and Rothermel, G. "An

Empirical Evaluation of a Testing and Debugging
Methodology for Excel". In Proceedings of 2006
International Symposium on Empirical Software
Engineering. Rio de Janeiro. Sept. 21-22, 2006, 2006. p.
278-287

[2] Carver, J., Hochstein, L., Kendall, R.P., Nakamura, T.,
Zelkowitz, M.V., Basili, V.R., and Post, D.,
"Observations about Software Development for High
End Computing." CTWatch, 2006. November: 33-37.

[3] Carver, J., Shull, F., and Basili, V.R., "Can Observational
Techniques Help Novices Overcome the Software
Inspection Learning Curve? An Empirical
Investigation." Empirical Software Engineering: An
International Journal, 2006. 11(4): 523-539.

[4] Carver, J., Kendall, R.P., Squires, S., and Post, D.
"Software Development Environments for Scientific
and Engineering Software: A Series of Case Studies". In
Proceedings of 2007 International Conference on
Software Engineering. Minneapolis. 2007. p.

[5] Hochstein, L., Nakamura, T., Basili, V.R., Asgari, S.,
Zelkowitz, M.V., Hollingsworth, J.K., Shull, F., Carver,
J., Voelp, M., Zazworka, N., and Johnson, P.,
"Experiments to Understand HPC Time to
Development." CTWatch, 2006. November: 24-32.

[6] Maldonado, J., Carver, J., Shull, F., Fabbri, S., Doria, E.,
Martimiano, L., Mendonca, M., and Basili, V.,
"Perspective-Based Reading: A Replicated Experiment
Focused on Individual Reviewer Effectiveness."
Empirical Software Engineering, 2006. 11(1): 119-142.

[7] Rothermel, G., Li, L., and Burnett, M. "Testing Strategies
for Form-Based Visual Programs". In Proceedings of
8th International Symposium on Software Reliability
Engineering. Albuquerque, NM USA: IEEE-CS. Nov.,
1997. p. 96-107

[8] Rothermel, G., Burnett, M.M., Li, L., DuPuis, C., and
Sheretov, A., "A Methodology for Testing
Spreadsheets." ACM Transactions on Software
Engineering and Methodology, 2001. 10(1): 110-147.

