
Multistage Methods for Freight Train
Classification?

Riko Jacob1, Peter Márton2, Jens Maue3, and Marc Nunkesser3

1 Computer Science Department, TU München, Germany
jacob@in.tum.de

2 Faculty of Management and Computer Science, University of Žilina, Slovakia
Peter.Marton@fri.uniza.sk

3 Institute of Theoretical Computer Science, ETH Zürich, Switzerland
{jens.maue|mnunkess}@inf.ethz.ch

Abstract. In this paper we establish a consistent encoding of freight
train classification methods. This encoding scheme presents a power-
ful tool for efficient presentation and analysis of classification methods,
which we successfully apply to illustrate the most relevant historic results
from a more theoretical point of view. We analyze their performance pre-
cisely and develop new classification methods making use of the inherent
optimality condition of the encoding. We conclude with deriving optimal
algorithms and complexity results for restricted real-world settings.

1 Introduction

In real-world railway classification yards, incoming trains are split up into single
cars and then reassembled to form outbound trains. It turns out that this pro-
cess often constitutes the bottleneck in freight transportation, but it would be
expensive to extend or redesign classification yards that were designed decades
ago to accommodate traffic requirements substantially different from today. An
obvious way to improve the performance of existing classification yards is to
optimize the classification process itself. To this end we revisit the history of
classification methods and develop an efficient representation of these schemes,
which allows their consistent presentation and analysis. In the light of this novel
encoding, we characterize optimal classification schemes and analyze the under-
lying algorithmic questions.

A complete classification yard is shown in Fig. 1. It consists of a receiving
yard, where incoming trains arrive, a classification bowl, where they are sorted,
and a departure yard, where outgoing trains are formed. Many yards feature a
hump, a rise in the ground, from which cars roll in on the tracks of the classifi-
cation bowl. These yards are called hump yards in contrast to flat yards, which

? This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).
This work was partially supported by the University of Zilina, Faculty of Manage-
ment and Computer Science, under institutional grant no. 1/2007.

ATMOS 2007 (p.158-174)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1179



Multistage Methods for Freight Train Classification 159

receiving
yard

classification
bowl

departure
yard

H

Fig. 1. A typical classification yard with receiving yard, hump (H), classification bowl,
and departure yard.

require cars to be hauled by shunting engines. A typical classification bowl is
shown in Fig. 2(a). Not all yards have receiving and departure tracks, some have
single ended classification bowls as in Fig. 2(b), others have a secondary hump
at their opposite end as in Fig. 2(c).

exit

track

(a) double-ended yard

classification tracks

hump

track

hump

ladder

(b) single-ended yard

secondary

hump

additional

exit

(c) advanced layout

Fig. 2. Some common classification bowl layouts.

General Process of Train Classification The overall classification process
looks as follows: inbound trains are collected in the receiving yard on a set of
tracks called receiving tracks, from where they are moved to the hump track.
There, the cars of the train are disconnected and the complete train is pushed
over the hump by a yard engine, sending the cars through a series of switches
called ladder, separately guiding each car on a preassigned classification track of
the classification bowl. This process is called a roll-in operation. Then, the actual
sorting process is performed to produce outbound trains, which are picked up
by freight locomotives to leave the classification yard.

Regarding the actual classification procedure, there are essentially two modes
of operation for shunting yards, which are typically performed in parallel or
alternatingly: single-stage and multistage sorting. In single-stage sorting, each
classification track usually corresponds to a common destination, such as a re-
mote classification yard. Departing trains are built by collecting the cars from



160 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

one or several tracks and coupling them into trains that leave the bowl to the
departure yard—if there is any. Single-stage sorting is normally performed for
large volume traffic, e.g. traffic between classification yards, and the cars of the
created trains are in arbitrary order.

For traffic directly going to its final destination, multistage sorting is used.
Since the order requirements for this type of outgoing trains are more complex,
single-stage sorting is not applicable here. In multistage sorting, after the in-
coming trains have been pushed over the hump (primary humping), a shunting
engine repeatedly pulls back the cars from a given track (pull-out operation) over
the hump on the hump track. These cars are then pushed over the hump again,
so that again each car can be independently routed through the ladder to any
classification track. This process, called rehumping, is iterated until all outgoing
trains have been formed. If a classification track is used only for receiving cars
of an outgoing train, but the cars on it are never pulled back to the hump track,
it is called train formation track.

Related Work Multistage methods are presented from an engineering point
of view in a number of publications from the 1950s and 1960s [1–4]. Krell [3,
4] compares two basic multistage methods and three improvements of one of
them, including an example for dealing with a restricted number of available
classification tracks. Some of these methods had been described earlier in a
different fashion by Flandorffer [1].

Some of these methods were again considered by Siddiqee [5] in 1972 and
in a series of publications in the 1980s by Daganzo, Dowling, and Hall [6–9].
These publications generally deal with multiple outbound trains, but the actual
structure of inbound trains is completely ignored.

A classification problem similar to single-stage sorting was studied by Dahl-
haus, Horak, Manne, Miller, and Ryan [10, 11] in 2000. For their train classifica-
tion model, they give a notion of presortedness of the input train which is used
to improve the classification process. Several degrees of freedom in the order
requirement of the outbound train are regarded in [11], while finding an optimal
schedule for one specific such type is shown to be NP-complete in [10].

A systematic framework for classifying single- and multistage classification
methods is given by Hansmann and Zimmermann [12]. For the case of a limited
number of classification tracks and an extended output requirement which han-
dles several cars being of the same type, they independently obtain the result we
give in Sect. 6. Furthermore, the authors show for a specific multistage method
that finding an optimal schedule is NP-hard for the output specification of [10]
mentioned above.

Baumann [2] explains the design aspects concerning multistage train forma-
tion for the design of the classification yard ‘Zürich-Limmattal’ in Switzerland.
The resulting layout features a secondary hump similar to Fig. 2(c), which is
currently not used due to cost and organizational reasons [13].

The historic results mentioned in this section are reconsidered in Sect. 4 from
a more theoretical point of view.



Multistage Methods for Freight Train Classification 161

Outline In the following section we introduce the above described problem
and concepts formally, including the objective of our problem. Then, we present
an efficient encoding for representing the classification process in Sect. 3. This
allows us to concisely describe and analyze the above methods as done in Sect. 4,
followed by analyzes of new problem variants in Sect. 5 and Sect. 6 and some
concluding remarks in Sect. 7.

2 Model and Notation

In this section we introduce the terminology and notation used in our model. We
assume the common yard layout of a single- or double-ended classification bowl
with a single hump as shown in Fig. 2(b) and Fig. 2(a), where the classification
tracks are denoted by θ1, . . . , θW . We denote their number by W , the width of
the yard, and denote by Cmax the capacity of the yard, i.e. the maximum number
of cars that fit on any of these tracks.

Cars will be represented by positive integer numbers and trains by (ordered)
n-tuples of cars; the number of cars n of a train T will be referred to by the
length of T . In our model, there is a set of ` input trains and an ordered set
of m output trains, together called a classification task, for which we make the
following assumptions: for the ` input trains T i = (τ i

1, . . . , τ
i
n′

i
), i = 1, . . . , `,

with a total number of cars n :=
∑`

i=1 n′i, we assume τ i
j ∈ {1, . . . , n} and all

cars are distinct. We further assume that concatenating the output trains in
their given order yields the sequence (1, . . . , n), i.e., if ni denotes the length of
the i-th output train, i = 1, . . . ,m, the first output train is given by (1, . . . , n1),
the second by (n1 + 1, . . . , n1 + n2), and the last by (n − nm + 1, . . . , n).

For any train T = (τ1, . . . , τn), car τ1 is called the head of T , and, for any
pair of cars τi, τj of T with i < j, we say τi is in front of τj . For a train T
located on the hump track, the head of T represents the car that is closest to
the hump. For a train T located on some classification track, its head represents
the car closest to the dead-end. Thus, the train in Fig. 3(b) is represented by
(6, 1, 4, 2, 3, 5) and the train in Fig. 3(f) by (1, 2, 3, 4, 5, 6).

Any multistage sorting method consists of a sequence of alternating roll-in
and pull-out steps. In order to specify a single pull-out step, it suffices to specify
which is the classification track to pull out cars from. However, to fully specify a
roll-in operation, a target track must be given for every car on the hump track.
We call such a pair of operations a hump step, and an initial roll-in followed
by a sequence of h hump steps is called a classification schedule of length h.
A classification schedule is called valid for a classification task if applying it
transforms the given set of input trains into the set of output trains. Unless
otherwise stated, our objective is to find classification schedules of minimum
length.

Definition 1 (Optimal Classification Schedule). Given a classification task
by ` input trains (τ i

1, . . . , τ
i
n′

i
), i = 1, . . . , `, and the lengths (n1, . . . , nm) of the

m outgoing trains, find a valid classification schedule of minimum length.



162 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

Note that, according to the definitions above, the term length may refer
either to the number of hump steps of a schedule or to the number of cars of a
train. In the remainder of this paper, the respective meaning will always be clear
from the context. Moreover, we will sometimes abbreviate statements referring
to pull-out steps, such as abbreviating ‘the cars of a track are pulled out’ to ‘a
track is pulled (out)’.

3 Classification Schedules

In this section we describe an encoding of classification schedules by sets of binary
numbers. Conversely, we show how to interpret such sets as schedules, which
yields a bijective relation between both. Furthermore, a notion of presortedness
is introduced, which allows deducing optimal schedules. As it turns out, the core
of a classification scheme can already be given by specifying how a single input
train is sorted into a single output train. For this reason we first consider this
case and develop the encoding scheme. At the end of this section we show how
to extend the results to the general case.

Single train We start by introducing a simplified view on the tracks. After
a track has been emptied, cars may be sent to it in subsequent steps, so one
physical track might be filled and emptied more than once during a classification
procedure. We model this by introducing logical tracks that we define such that
pull-out i is performed on logical track i. This means that the logical tracks are
pulled out in the order (1, 2, . . . , h). For a classification schedule of length h,
the mapping from the h logical to the W physical tracks is given by a sequence
(θi1 , . . . , θih

) of physical track names, called the track sequence.
The course of a single car τ can now be represented by an h-bit binary string

b = bh . . . b1, bi ∈ {0, 1}, where bi = 1 if and only if τ visits the i-th (logical)
track. (In the following these strings are interpreted as little-endian numbers,
i.e. bh is the most significant bit of b.) This representation uniquely defines the
course of car τ : τ is pulled out in the i-th step if bi = 1 simply because it
has been sent there in some earlier step. Then, it is rolled in on the k-th track
given by k := minj>i,bj=1 j, i.e. the lowest bit bk = 1 left of i. If bj = 0 for
all j > i, then τ is guided to the train formation track of its target train. The
track for the initial roll-in is given by the least significant bit bi with bi = 1. The
complete schedule for a train of n cars can be simply represented by a binary
encoding B = (b1, . . . , bn) consisting of a sequence of binary numbers, such that
bi = bh . . . bi

1 encodes the course of the i-th car, i = 1, . . . , n.
An example is given in Fig. 3, which shows a classification procedure and

the binary representation of its schedule for a single input train of six cars.
There are more classification tracks than schedule steps, so the above mentioned
mapping from logical to physical tracks is one-to-one. Note that in our model the
classification process is not yet finished in situations (d) or (e); a valid output
train is obtained only when the situation depicted in (f) has been reached.



Multistage Methods for Freight Train Classification 163

1 0 0
0 1 0
0 0 1
0 1 1
0 0 0
1 0 1

4

2

5

3

1

3

0

5

2

4

1

6

(a)

5

3

2

4

1

6

θ1θ2θ3θ6

(b)

2

4

635
θ1θ2θ3θ6

1

(c)

6

5

4

3
θ1θ2θ3θ6

2

1

(d)

5

6

θ1θ2θ3θ6

1

2

3

4

(e)

θ1θ2θ3θ6

6

5

4

3

2

1

(f)

Fig. 3. An exemplary classification procedure of h = 4 steps for a train of six cars,
using θ6 for output train formation. The encoding is shown in (a), the input train
in (b). Figures (c)–(f) show the consecutive situations after each hump step, always
pulling out the cars of the rightmost occupied track.

The following lemma shows how to read the binary representation of sched-
ules: if two cars have different codes, the car with the smaller code will be located
in the target train at a position closer to the head of the train. If two cars have
the same code, they will not swap their relative order.

Lemma 1. For a classification schedule for an incoming train (τ1, . . . , τn) given
by a binary encoding B = {b1, . . . , bn} two cars τi and τj for i < j swap their
relative position if and only if bi > bj.

Proof. There are three possible cases for the order of bi and bj . First, if bi = bj

the two cars will go exactly the same course and end up in the same order as
in the input train. Second, if bi < bj , let k be the most significant index k with
bi
k = 0 and bj

k = 1. Car τj is sent to some track θnext in hump step k. As bi and
bj are identical on all bits left of k, car τi was sent directly to θnext in a previous
step, so τi appears at a position in front of τj . For the same reason, the two
cars will not swap their relative order at any step later than k, so τi ends up
on the output track at a position in front of τj in the output train. Finally, by
symmetry if bi > bj car τj ends up in front of τi. The three cases together give
the statement of the lemma.

In the following theorem, we show that there is a bijection between valid
classification schedules and binary encodings with a special property.

Theorem 1. A classification schedule for an incoming train (τ1, . . . , τn) of h
steps is valid if and only if its binary encoding B = (b1, . . . , bn), where the bi are
h-bit binary numbers, has the following property:

For all i, j ∈ {1, . . . , n} with i < j, if τi > τj then bi > bj (P).



164 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

Proof. If a classification schedule translates into a binary encoding with property
(P), then, by Lemma 1, exactly the cars that need to be swapped are swapped
and the classification schedule is thus valid. Conversely, if a binary encoding does
not have property (P), then again by Lemma 1 the corresponding classification
schedule cannot be valid.

From the above theorem it is clear that an optimal schedule corresponds to
a binary encoding B of minimum length that satisfies property (P). For con-
structing B we need to specify, which cars can get the same code, which leads
to a notion of presortedness. We show that to this end it is enough to look at
consecutive cars in the output train that are in the wrong order in the input
train:

Definition 2. Given a train T = (τ1, . . . , τn), we say that a pair (i, i + 1), i ∈
{1, . . . , n − 1} defines a break τj = i + 1, τk = i for indices j, k with j < k. The
set of breaks canonically decomposes each train into chains that can be ordered
by their first elements.

For example, train T = (9, 4, 5, 7, 1, 2, 8, 6, 3) decomposes into the disjoint chains
c1 = (1, 2, 3), c2 = (4, 5, 6), c3 = (7, 8), and c4 = (9).

Lemma 2. Only cars of the same chain can get the same code. For two cars of
two different chains the smaller one must get a smaller code.

Proof. By Definition 2 all cars of a chain are in the correct order in the input
train. By Lemma 1 these cars can get the same code. For the other direction
note that for each break (τj = i + 1, τk = i) in a valid schedule bj > bk holds by
Lemma 1. Now take any two cars τ`, τm from two neighboring chains separated
by break (i, i + 1). If ` < m and τ` > τm they cannot get the same code directly
by Lemma 1. So assume ` < m, τ` < τm. Car τk is the last element of the chain
of τ`, and τj is the first element of the chain of τm, therefore b` ≤ bk < bj ≤ bm,
which implies b` < bm. The claim of the lemma follows by transitivity.

The main result of this section now follows as a corollary of this.

Theorem 2 (optimal schedules). Let T = (τ1 . . . τn) be a train of length n
and c its number of chains. T can be reclassified within dlog2 ce hump steps in a
hump yard of unrestricted width and capacity. This bound is optimal.

This result can easily be extended to more complicated objective functions.
One of the most general such objectives is to charge a cost of α for a pull-out of
a train and β for a roll-in of a single car. It still holds that for an encoding B the
number of bits equals the number of pull-outs of the corresponding classification
schedule. The number of 1’s in the encoding equals the number of roll-ins. For
an incoming train of c chains and a fixed number h of steps we can construct
the optimal classification schedule of length h by choosing greedily the c h-bit
binary numbers having the least 1’s. By evaluating the objective functions for
the admissible range dlog2 ce ≤ h ≤ c the optimal classification schedule can be
found.



Multistage Methods for Freight Train Classification 165

Multiple Trains Any reasonable classification task involves multiple incoming
and multiple outgoing trains. However, as we will see in this section, once the
order of the incoming trains has been determined, such a shunting task is not
more difficult than sorting a single incoming into a single outgoing train.

Observation 1 Given ` incoming trains I = (τ1
1 , . . . , τ1

n′
1
), . . . , (τ `

1 , . . . , τ `
n′

`
) in

the order in which they are to be rolled into the yard, and m outgoing trains
by their lengths (n1, . . . , nm) then the optimal classification schedule for these
trains for the case of unrestricted capacity is determined by the union of the
optimal classification schedules {B1, . . . , Bm} for the following m classification
tasks: Let I ′ = (τ1, . . . , τn) denote the concatenation of the ` input trains. Then
the i-th classification task, 1 ≤ i ≤ m, is to sort the subsequence of I ′ that
corresponds to the i-th output train. The length of the resulting schedule for the
whole classification task is given by max

1≤i≤m
length(Bi).

An analogous observation holds for classification with width restriction as
discussed in Sect. 6, but not for restricted length as discussed in Sect. 5. It is
also important to note that the observation assumes a fixed order of the incoming
trains. This assumption is realistic in cases where the input trains arrive scattered
over time or have some other natural order. If this is not the case, the problem of
choosing an optimal order arises. This problem is closely connected to a special
minimum feedback arc problem [14].

Lemma 3. There is a one-to-one correspondence of finding the permutation
of input trains I = {T1, . . . , T`} that leads to the optimal classification sched-
ule (OPT-PERM) and computing minimum feedback arc sets in directed multi-
graphs, the edges of which form a Eulerian path.

Proof. We first show how to transform OPT-PERM into an minimum feedback
arc set instance G = (V,E). Each incoming train Ti is mapped to a node n(Ti).
For each pair of cars τk = i ∈ Tα, τj = i + 1 ∈ Tβ we add a directed edge
(n(Tα), n(Tβ)). It follows that in total n (potential self-)edges are added to the
graph. These edges correspond to a Eulerian path in G. For any given permu-
tation π of I the number of breaks of π(I) equals the number of arcs pointing
backwards in the linear arrangement π(V ). By deleting exactly these arcs the
graph becomes acyclic. Thus by Theorem 2 the objective function of OPT-PERM
equals the logarithm of the objective function of minimum feedback arc set plus
one. For the other direction it is easy to see that the following construction
will transform any multigraph with an Eulerian path into an OPT-PERM in-
stance with the same relation of the objective functions. For each node n ∈ V
we introduce an incoming train T (n). Then we walk along the Eulerian path
P = (ni1 , . . . , nim+1) and add for each nij ∈ P car j to train T (nij ).

To the best of our knowledge, the complexity status of minimum feedback arc
set in such graphs is open. However, by a lemma of Newman, Chen, and Lovász
[15, Theorem 4], a polynomial algorithm for OPT-PERM would lead to a 16

9 -
approximation algorithm for the general minimum feedback arc set problem,
improving over the currently best known O(log n log log n) algorithm [16].



166 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

4 Multistage Classification Methods

With the efficient encoding of schedules at hand, we illustrate the most promi-
nent classification methods in this section and analyze their performance in
detail.

4.1 Basic Multistage Methods

Multistage methods can be categorized into two general classes: sorting by train
and simultaneous marshalling. In the following we assume that we are given m
output trains by their lengths n1, . . . , nm and define nmax = max1≤i≤m ni and
nmin = min1≤i≤m ni.

Sorting by Train Sorting by train comprises two stages. First, inbound cars
are separated according to their outbound trains by sending all cars of a com-
mon output train to the same track. Second, the resulting unordered trains are
processed successively: a train is pulled back over the hump and rolled in again,
sorting the cars according to their position by sending each car to a different
track. Finally, the single cars are moved from the tracks in the required order
and coupled to form an outgoing train. In double-ended yards this can be per-
formed by a shunting engine from the opposite end of the yard. As in the rest
of the paper the train formation tracks will not appear in the encoding as they
are implicitly given. The process continues with the next train.

The length h of the schedule is given by h = m +
∑m

i=1 ni. For the encoding
bh . . . b1 of a car τk

` , bit bi = 1 if i = k +
∑k−1

j=1 ni (corresponding to the initial

roll-in) or i = k +
∑k−1

j=1 ni + ` (corresponding to the second stage).
This method occupies exactly m classification tracks after the first stage, so

the total number of tracks is at least m + nmin − 1, and at most m + nmax − 1,
while the latter number is tight if a train with nmax cars is processed in the
second stage first.

Sorting by train is also called initial grouping according to outbound trains [5].1

Simultaneous Marshalling Unlike sorting by train, the first stage of the two-
stage method simultaneous marshalling sorts according to the cars’ position in
the output train. In terms of codes this step forces bi = 1 for every i−th car τk

i of
any train 1 ≤ k ≤ m. In the second stage, the cars are sorted according to their
target trains: the tracks are successively pulled out in the order of the positions,
and each set of cars pulled out is directly rolled back in, always sending cars of

1 The according names used in the German literature are Ordnungsgruppenverfahren
for sorting by train, Simultanverfahren for simultaneous marshalling, and further-
more Elementarverfahren to explicitly refer to the basic version of the latter. Tri-
angular sorting is called Vorwärtssortierung bei höchstens zweimaligem Ablauf, geo-
metric sorting maximale Vorwärtssortierung in [3].



Multistage Methods for Freight Train Classification 167

a common output train to the same classification track. This is already implied
by the above codes.

This multistage method minimizes the number of cars rolled-in, which must
be paid for by a number nmax of hump steps that is maximal for an unrestricted
classification yard.

Regarding the track requirement, exactly nmax tracks are used in the first
stage. Thus, at most nmax + m − 1 tracks are needed since up to m − 1 further
tracks are needed for train formation, and at least nmin +m−1: pulling the first
track of the last nmin tracks to be pulled forces starting the formation of all m
output trains (if not yet started), so nmin + m − 1 tracks are occupied then.

In contrast to sorting by train the formation of all output trains is performed
simultaneously. Simultaneous marshalling is also called sorting by block1, the
simultaneous method, or initial grouping according to subscript [5].

The notion of a block corresponds to a set of cars that take a common
itinerary over potentially many shunting yards. A block is not broken up at the
intermediate classification yards. The associated blocking and makeup problems
are out of the scope of this paper, see [17] for references. Blocking is partic-
ularly advantageous in large countries like the U.S. and often not applied in
most smaller freight systems [18]. If in some freight system blocks are built in
multistage sorting, a classification task with cars of unspecified order in some
of the target trains arises. Blocks that are broken up have no influence on the
classification schedule, blocks that are not broken up at the current classification
yard can be treated as a weighted car.

This method never guides cars to a track of the final train formation at the
first stage, which is a necessary assumption for a layout as shown on the right of
Fig. 2. However, if the tracks for target train formation are accessible from the
primary hump, the schedule becomes one step shorter, which also holds for the
following variants.

4.2 Variants of Simultaneous Marshalling

In the basic variant of simultaneous marshalling, every car is pulled out once and
rolled in twice, once in either stage. In other variants this restriction is dropped.
Instead of stages, these variants are specified by sequences of hump steps, and
each method is characterized by a class of encodings of common attributes.

Triangular Sorting A variant of simultaneous marshalling called triangular
sorting is given by allowing at most three roll-in operations (including the final
roll-in of a car to its output train) for each car. For the schedule encoding, this
yields a restriction of not more than two bits equal to one per car.

For this method Krell gives an upper bound of 1
2h(h + 1) on the maximum

length nmax of an output train that can be sorted in h steps [3]. This result
can be reformulated in terms of chains yielding a better bound in general. If
c1, . . . , cm denote the respective numbers of chains of the trains, for a sufficiently
large classification yard, classifying by triangular sorting can be done within h



168 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

hump steps if cmax ≤ 1
2h(h + 1). This follows immediately by our encoding: the

number of distinct codes bh . . . b1 of length h and bi = 1 for at most two different
i ∈ {1, . . . , h} is given by

(
h
1

)
+

(
h
2

)
=

(
h+1

2

)
, and the required number of distinct

codes is not greater than the maximum number of chains by Lemma 2.
The triangular-like occupation of the classification tracks after the initial

roll-in explains the name of this variant.1 The method can be generalized to any
restriction on the number of roll-ins for a car.

Geometric Sorting The method of geometric sorting1 is derived from simul-
taneous marshalling by dropping the number restriction of roll-ins completely,
which corresponds to binary codes with no restriction at all. The performance
of this method is given in the literature by nmax ≤ 2h − 1 for h hump steps [3].
In combination with the notion of chains this yields exactly the classification
scheme of Theorem 2 with a bound of cmax ≤ 2h − 1, where cmax denotes the
maximum number of chains in any output train.

Considering the special case of a single output train of length 2k − 1 for
some positive integer k, the initial roll-in sends 2k − i cars to the i-th track, i =
1, . . . , k; the sum of these numbers gives the geometric sum, which explains this
method’s name. As mentioned before, geometric sorting minimizes the number
of hump steps, assuming the number and capacities of tracks are unrestricted.
If this cannot be assumed, simultaneous marshalling variants of the following
sections should be considered.

5 Restricted Track Capacities

Real world classification yards have classification tracks of bounded capacity for
(intermediate) sorting and final train formation. In this section we show that
the problem of finding an optimal classification schedule becomes NP-complete
with this additional constraint and point out a special case where the problem
remains easy.

5.1 General Case

Assuming bounded track capacities for the classification tracks yields an NP-
hard problem as shown in Thm. 3 below. The bound on the track capacities is
formalized as follows: All tracks have a bounded capacity of Cmax, i.e., they can
accommodate at most Cmax cars, with the exception of specific train formation
tracks where the outbound trains are formed. We do not allow to pull-out from
these tracks.

Theorem 3. It is NP-hard to find the optimal classification schedule for capacity-
bounded tracks.

Proof. By reduction from “Not ALL Equal 3-SAT” (NAE3SAT) which is known
to be NP-complete [19, LO3]. Given an instance of NAE3SAT having n variables



Multistage Methods for Freight Train Classification 169

and m clauses, we construct an instance of 2n input trains that are to be sorted
into 2n outgoing trains without any interaction between the trains, i.e., the ith
input train has cars only for the ith outgoing train. Note that even though there
are multiple input trains their order is irrelevant, because there is a one-to-
one correspondence of input to output trains (this is in contrast to the general
situation discussed in Lemma 3). For ease of exposition we start the proof by
making two assumptions, and show later that these can be easily enforced. First,
each car can be part of at most one additional roll-in. Second, we can have
individual capacity bounds for all logical tracks.

The main idea of the proof is to allow to use a given number M = 4n + 2m
of steps and thus logical tracks and to let all input trains have exactly M − 1
chains. It follows that at most one of the chains of each train can be split or a
single logical track can be left unused (if two chains of the same train end up on
the same track they must be in wrong order, which necessitates an additional
roll-out in contradiction to the first assumption). The transformation enforces
the latter possibility for all trains. Thus, the “local decisions” that we can encode
are for each train, which track should be left unused.

We proceed to show how to use this idea in the transformation and give an
example in Fig. 4. First, for the input trains it is enough to specify the length of
each of their chains, instead of giving the full sequence that leads to these chains.
For example we will define a train as (1, 4, 2) by its sequence of chains (chain
sequence) and ignore whether this comes from an input train (2, 6, 1, 3, 4, 7, 5)
or (6, 2, 3, 1, 4, 5, 7). chains and logical tracks are tightly connected. As all chain
sequences will have one chain less than there are logical tracks, the chain-to-
track assignment can be specified by giving the position of the gap, i.e., the
logical track left out, e.g., (1, ∗, 4, 2). In this example the chain of length 1 goes
to logical track 1, length 4 goes to 3, and length 2 goes to 4.

x1 ∨ x̄2 ∨ x3 ∧ x̄1 ∨ x2 ∨ x̄3

x1

0

x2

1

x2

0

x3

1

x3

0

x1

1
C+

1 C−1 C+
2 C−2

x1

0

x2

1

x2

0

x3

1

x3

0

x1

1
x1 k 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

x̄1
x2
x̄2
x3
x̄3

k
k k

k
k

k
k

kk

k

k
k

k

k
k

k

k

Fig. 4. Sketch of the transformation for an example with two clauses on three variables.

Each chain sequence has 4n + 2m − 1 chains, which correspond to a start
variable part of length 2n, followed by a clause part of length 2m and an end
variable part of length 2n−1. There are 2n chain sequences, one for each literal.
All chains have either length k (“ON”) or length 1 (“OFF”). The purpose of the



170 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

start and end part of the chain sequences is to force the gap into these sequences.
This is achieved by defining the start and end sequences of both xi and x̄i as
follows:

(

start part︷ ︸︸ ︷
1, 1︸︷︷︸

1 pair/variable

, . . . , k, 1︸︷︷︸
pair i

, 1, 1, . . .,
clause part︷︸︸︷. . . ,

end part︷ ︸︸ ︷
1, 1, . . . , k, 1︸︷︷︸

pair i

, 1, 1, . . . , 1, 1)

Both sequences have length M−1 together with the clause part that remains
to be specified.

The first 2n logical tracks and the last 2n logical tracks have all capacity
2n + k − 1, except for the first and the last track which have both capacity
n + k − 1. The total capacity of the first 2n positions of all chain sequences
exceeds the total available capacity for the start part by n, the same holds for
the end part. This situation forces at least n gaps in the start part and at least
n gaps in the end part, thus exactly n gaps in both parts. Having identical
sequences for a variable and its negation enforces together with the capacity
bound that for each variable either there is a gap at the beginning of the chain
sequence for xi and the end of the one for x̄i or vice versa. Thus, we can think
of the chain sequences for variable xi as either being to the left (xi = TRUE) or
to the right (xi = FALSE).

The clause sequence has 2m logical tracks, 2 for each clause. The first track of
clause j stands for a literal making this clause true (contributing to set C+

j ), the
second for one making it false (contributing to set C−

j ). From above it follows
that there can be no gaps in the clause parts. We indicate the occurrences of
literals in clauses by turning on the corresponding position in the chain, as
exemplified in Fig. 4. The chains for each literal can be either left or right and
therefore contribute either to C+

j or C−
j for each clause j. By setting the capacity

constraint to 2n+2k−2 for each logical track in the clause part we enforce the not
all equal constraint. This follows because this capacity limit is exceeded if and
only if three literals contribute to the same of the sets C+

j and C−
j . Therefore,

under the assumptions above there is a yes-instance for NAE3SAT if and only if
there is a classification schedule for the transformed instance that respects the
given capacity bound.

It remains to specify how to enforce the two properties above. First, we want
to replace the individual capacity constraints by a uniform one. To this end, we
add one chain sequence of full length M . As every car is only allowed to be pulled
once, the classification schedule for this chain sequence is unique. By adjusting
the lengths of the chains of this chain sequence, the differences in the capacity
constraints can be adjusted.

To enforce that every car is pulled at most once, we add one chain sequence
with one big non-trivial chain. The length of this chain is exactly the excess
capacity of the logical tracks w.r.t. all chain sequences constructed before. Now,
if any car were pulled twice another car could not be pulled at all, which is
impossible in a correct classification schedule.



Multistage Methods for Freight Train Classification 171

5.2 Other Results

Optimal classification schedules for tracks of bounded capacity Cmax translate to
binary encodings B with the property that for each bit position the total sum of
1’s weighted by the lengths of the corresponding chains is bounded by Cmax. We
have recently shown [20] that if all chains have the same length optimal codes
can be constructed efficiently (in the size of the resulting codes). On the other
hand, for arbitrary chain length the above proof shows NP-completeness.

6 Restricted Number of Classification Tracks

In this section we consider the width constraint of a shunting yard. In particu-
lar we are interested in classification tasks for which the optimal classification
schedule without width restriction needs a number n of pull-outs and thus logi-
cal tracks that is greater than the available number of physical tracks W . This
schedule is in general not directly implementable. In this section we show how
to construct optimal schedules under restricted width. From Observation 1 we
know that it is enough to consider the case of a single input and a single outgoing
train. As mentioned in Sect. 1, an example for this setting is given in [3] includ-
ing the corresponding schedule and maximum number of cars that can be sorted
for a number of given tracks. As mentioned before, Hansmann and Zimmermann
independently obtain the same result in [12]. Their description also covers the
case of an input with several cars being of the same type, i.e., the same integer
may occur more than once in the input.

To simplify the exposition, we slightly deviate from the notation in the other
sections and assume that at the start the input train is already in track θ1. For
this initial roll-in we count one step (all codes have b1 = 1). We also count the
track of the outgoing train as part of the code (all codes have bh = 1).4

A complete specification of the classification schedule now requires in addition
to the binary codes of length h the track sequence (θi1 , . . . , θih

) for this schedule.
By the assumption above the first pulled track is the input track θ1, and the
last pulled track is the output track. The binary codes are restricted by the
destination track being available which leads to the following restriction for the
codes. More precisely, assume that a code has a 1 at a certain position. Then
there are precisely W next choices for tracks, namely the first occurrence of
a θi in the remaining sequence of pull-outs, 1 ≤ i ≤ W , and these are the only
possibilities for the next 1.

Observation 2 The binary encoding {b1, . . . , bn} for valid classification sched-
ules on yards of width W and unrestricted width have the property that if any of
the codes bi, 1 ≤ i ≤ n has bi

j = 1 then the set of indices of follow-up tracks over
all codes {k|∃i′, k = minj′>j,bi′

j′=1 j′} has cardinality at most W .

4 These assumptions are not crucial for the correctness of the statements below. How-
ever they make the recurrence equations easier to read.



172 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

If the tracks are pulled in a round robin fashion these are exactly the next
W logical tracks and thus bit positions in the code, i.e., for round robin there
must not be W consecutive zeros in any of the codes. We will show that such a
round-robin strategy dominates all other strategies.

Let us analyze the number Rh of runs that can be sorted by h pull-outs on W
tracks that are used round-robin. We have R1 = R2 = 1, and Rh = 2h−2 for
3 ≤ h ≤ W as there are h − 2 positions with an unrestricted binary code.

Then, we get the recurrence equation Rh =
∑h−1

i=h−W Ri for h > W : All valid
codes of length h have a 1 at position h, then have the next most significant 1
at a position in the range h−W to h− 1. Now the number of such codes is the
sum of the number of codes starting with a 1 at this particular position, having
a trailing 1, and no W consecutive zeros.

For W = 2 these numbers are the Fibonacci numbers Fi, for larger values
of W a generalization of them. In any case we have Fh ≤ Rh ≤ 2h−2.

Once we know the correct h for a given W and a number of chains n the cor-
responding codes can also be efficiently constructed, for example by a recursive
algorithm that branches in each node into the W choices for the next 1.

Now it remains to be shown that it is optimal to pull the tracks in a round
robin fashion. We will do this inductively. Of course for h ≤ W this is the case.
Assume we already know that the maximal number of codes on h′ positions (for
the best possible track sequence) is Rh′ for all h′ < h. Now take one optimal
track sequence and set of codes for h pull-outs. The codes divide into at most W
classes by their second 1 (the positions depend on the track sequence). Order the
classes according to this position of the second 1. Then, the first class has codes
of length at most h−1, the second of length at most h−2, and so on. Hence, the
number of codes in the classes is bounded by Rh−1, Rh−2 and so on (even if the
different classes were allowed to have different track sequences), yielding that at
most Rh codes are possible. The following theorem sums up these results.

Theorem 4. A classification schedule for a yard of width W and unrestricted
length and an input train of n chains needs h steps in the above model, where
h ∈ IN+ is the smallest integer h such that r is greater or equal to the solution
of the recurrence equation

Rh =


1 for h = 1
2h−2 for 2 ≤ h ≤ W∑h−1

i=h−W Ri for h > W

The corresponding track sequence is round-robin, i.e, (θ1, θ2, . . . , θW , θ1, θ2, . . .).
This classification schedule is optimal and can be constructed in linear time (in
the size of the schedule). For h = 2 we have that Rh = Fh where Fh = ϕn−(1−ϕ)n

√
5

is the h-th Fibonacci number, and ϕ the golden ratio.

Proof. We have already shown that a round-robin track sequence dominates
all other sequences, and that Rh equals the maximum number of chains that
can be sorted by “round-robin” codes. The optimality now follows directly from
Lemma 2. The construction is via the mentioned recursive algorithm.



Multistage Methods for Freight Train Classification 173

7 Concluding Remarks

We have developed an efficient encoding of freight train classification schedules
to present, analyze, and develop train classification methods for real-world hump
yards. This surprisingly simple though powerful encoding can be used to analyze
the efficiency of commonly used multistage methods, of which we proved the
optimality of the simultaneous variant geometric sorting in terms of hump steps,
considering presorted input.

Future Work It might be interesting to find further optimization criteria for
train classification in the literature which are relevant in practice, in order to
incorporate these objectives in the encoding scheme. There are further possibil-
ities to specify output requirements, similar to the mentioned concept of blocks,
and a straightforward question is how to derive optimal schedules in such set-
tings. Finally, if the presented methods can be simulated to successfully work in
practice, their implementation may accelerate the classification process in many
real-world hump yards.

Acknowledgments

We would like to thank N. S. Narayanaswamy for discussions on the relation of
OPT-PERM to minimum feedback arc set problems.

References

1. Flandorffer, H.: Vereinfachte Güterzugbildung. ETR RT 13 (1953) 114–118
2. Baumann, O.: Die Planung der Simultanformation von Nahgüterzügen für den

Rangierbahnhof Zürich-Limmattal. ETR RT 19 (1959) 25–35
3. Krell, K.: Grundgedanken des Simultanverfahrens. ETR RT 22 (1962) 15–23
4. Krell, K.: Ein Beitrag zur gemeinsamen Nutzung von Nahgüterzügen. ETR RT

23 (1963) 16–25
5. Siddiqee, M.W.: Investigation of sorting and train formation schemes for a railroad

hump yard. In: Proc. of the 5th Int. Symposium on the Theory of Traffic Flow
and Transportation. (1972) 377–387

6. Daganzo, C.F., Dowling, R.G., Hall, R.W.: Railroad classification yard throughput:
The case of multistage triangular sorting. Transportation Research, Part A 17(2)
(1983) 95–106

7. Daganzo, C.F.: Static blocking at railyards: Sorting implications and track require-
ments. Transportation Science 20(3) (1986) 189–199

8. Daganzo, C.F.: Dynamic blocking for railyards: Part I. homogeneous traffic. Trans-
portation Research 21B(1) (1987) 1–27

9. Daganzo, C.F.: Dynamic blocking for railyards: Part II. heterogeneous traffic.
Transportation Research 21B(1) (1987) 29–40

10. Dahlhaus, E., Horák, P., Miller, M., Ryan, J.F.: The train marshalling problem.
Discrete Applied Mathematics 103(1-3) (2000) 41–54



174 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

11. Dahlhaus, E., Manne, F., Miller, M., Ryan, J.: Algorithms for combinatorial prob-
lems related to train marshalling. In: Proc. of the 11th Australasian Workshop on
Combinatorial Algorithms (AWOCA-00). (2000) 7–16

12. Hansmann, R.S., Zimmermann, U.T.: Optimal sorting of rolling stock at hump
yards. In: Mathematics - Key Technology for the Future: Joint Projects Between
Universities and Industry. Springer (2007)

13. Holliger, H.P.: Rangierbahnhof Limmattal. Personal communication (2007)
14. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook

of Combinatorial Optimization. Volume 4. Kluwer Academic Publishers (1999)
15. Newman, A.: The maximum acyclic subgraph problem and degree-3 graphs. In:

Proceedings of the 4th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX. LNCS (2001) 147–158

16. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets
and multi-cuts in directed graphs. In: Proceedings of the 4th International Con-
ference on Integer Programming and Combinatorial Optimization. LNCS (1995)
14–28

17. Cordeau, J.F., Toth, P., Vigo, D.: A survey of optimization models for train routing
and scheduling. Transportation Science 32(4) (1998) 380–404

18. Campetella, M., Lulli, G., Pietropaoli, U., Ricciardi, N.: Freight service de-
sign for the italian railways company. In Jacob, R., Müller-Hannemann,
M., eds.: ATMOS 2006 - 6th Workshop on Algorithmic Methods and Mod-
els for Optimization of Railways, IBFI, Schloss Dagstuhl, Germany (2006)
<http://drops.dagstuhl.de/opus/volltexte/2006/685>.

19. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)
20. Jacob, R.: On shunting over a hump. Technical Report 576, Institute of Theoretical

Computer Science, ETH Zürich (2007)




