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Abstract

With the advent of autonomous robots with two- and three-dimensional scanning capabilities,
classical visibility-based exploration methods from computational geometry have gained in prac-
tical importance. However, real-life laser scanning of useful accuracy does not allow the robot to
scan continuously while in motion; instead, it has to stop each time it surveys its environment.
This requirement was studied by Fekete, Klein and Nüchter for the subproblem of looking around
a corner, but until now has not been considered for whole polygonal regions.

We give the first comprehensive algorithmic study for this important algorithmic problem that
combines stationary art gallery-type aspects with watchman-type issues in an online scenario. We
show that there is a lower bound ofΩ(

√
n) on the competitive ratio in an orthogonal polygon with

holes; we also demonstrate that even for orthoconvex polygons, a competitive strategy can only be
achieved for limited aspect ratioA, i.e., for a given lower bound on the size of an edge. Our main
result is anO(logA)-competitive strategy for simple rectilinear polygons, which is best possible
up to constants.

Keywords: Searching, scan cost, visibility problems, watchman problems, online searching, com-
petitive strategies, autonomous mobile robots.
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Figure 1: Left: The autonomous mobile robot Kurt3D equippedwith the 3D scanner. Top right: The
AIS 3D laser range finder. Its technical basis is a SICK 2D laser range finder (LMS-200). (Both
images used with kind permission by Andreas Nüchter, see [21].)

1 Introduction

Visibility Problems: Old and New. The study of geometric problems that are based on visibilityis a
well-established field within computational geometry. Themain motivation is guarding, searching, or
exploring a given region (known or unknown) by stationary ormobile guards.

In recent years, the development of real-world autonomous robots has progressed to the point
where actual visibility-based guarding, searching, and exploring become very serious practical chal-
lenges, offering new perspectives for the application of algorithmic solutions. However, some of the
technical constraints that are present in real life have been ignored in theory; taking them into account
gives rise to new algorithmic challenges, necessitating further research on the theoretical side, and
also trigerring closer interaction between theory and practice.

One technical novelty that has lead to new possibilities anddemands is the development of high-
resolution 3D laser scanners that are now being used in robotics, see Figure 1 for an image and [21]
for technical details. By merging several 3D scans, the robot Kurt3D builds a virtual 3D environment
that allows it to navigate, avoid obstacles, and detect objects [18]; this makes visibility problems quite
practical, as actually using good trajectories is now possible and desirable. However, while human
mobile guards are generally assumed to have full vision at all times, Kurt3D has to stop each time
it scans the environment, taking in the order of several seconds for doing so; the typical travel time
between scans is in the same order of magnitude, making it necessary to balance the number of scans
with the length of travel, and requiring a combination of aspects of stationary art gallery problems
with the dynamic challenge of finding a short tour.

In this paper, we give the first comprehensive study of the resulting Online Watchman Problem
with Discrete Vision(OWPDV) of exploring all of an unknown region in the presenceof a fixed cost
for each scan. We focus on the case of rectilinear polygons, which is particularly relevant for practical
applications, as it includes almost all real-life buildings. We show that the problem is considerably
more malicious in the presence of holes than known for the classical watchman problem; moreover,
we demonstrate that even for extremely simple classes of polygons, the competitive ratio depends
on the resolution of scans, i.e., on the aspect ratioA of the region. Most remarkably, we are able to
develop an algorithm for the case of simple rectilinear polygons that has competitive ratioO(logA),
which is best possible.
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Classical Related Work. Using a fixed set of positions for guarding a known polygonal region is
the classicalart gallery problem[4, 19]. Note that Schuchardt and Hecker [20] showed that finding
a minimum cardinality set of guards is NP-hard, even for a simple rectilinear region; quite easily,
this also implies that the offline version of our problem (minimum watchman problem with discrete
vision) is also NP-hard, even in simple rectilinear polygons.

Finding a short tour along which one mobile guard can see a given region in its entirety is the
watchman problem; see Mitchell[17] for a survey. Chin and Ntafos [3] showed that such a watchman
route can be found in polynomial time in a simple rectilinearpolygon, while others [22, 23, 2] found
polynomial-time algorithms for general simple polygons. Exploring all of an unknown region is the
online watchman problem. For a simple polygon, Hoffmann et al.[10] achieved a constant competitive
ratio ofc= 26.5, while Albers et al. [1] showed that no constant competitive factor exists for a region
with holes and unbounded aspect ratio. For simple rectilinear polygons, and distance traveled being
measured according to the Euclidean metric, the best known lower bound on the competitive ratio is
5/4, as shown by Kleinberg [15]; if distance traveled is measured according to the Manhattan metric,
Deng et al. [6] gave an online algorithm for finding an optimumwatchman route (i.e.c = 1); note
that our approach for the problem with discrete vision is partly based on this GREEDY-ONLINE
algorithm, but needs considerable additional work.

Kalyanasundaram and Pruhs [14] considered the explorationproblem in graphs and gave a com-
petitive factor of 18. Another online scenario that has beenstudied is the question of how to look
around a corner: given a starting position, and a known distance to a corner, how should one move in
order to see a hidden object (or the other part of the wall) as quickly as possible? This problem was
solved by Icking et al.[11, 12], who show that an optimal strategy has competitive factor of 1.2121. . . .

Searching with Discrete Penalties. In the presence of a cost for each discrete scan, any optimal
tour consists of a polygonal path, with the total cost being alinear combination of the path length and
the number of vertices in the path. A somewhat related problem is searching for an object on a line in
the presence of turn cost [5], which turns out to be a generalization of the linear search problem.

Somewhat surprisingly, scan cost (however small it may be) causes a crucial difference to the well-
studied case without scan cost, even in the limit of infinitesimally small scan times: quite recently,
Fekete et al. [9] have established an asymptotically optimal competitive ratio of 2 for the problem
of looking around a corner with scan cost, as opposed to the optimal ratio of 1.2121. . . without scan
cost, cited above. Other authors who have considered the problem of looking around a corner in
the presence of scan cost are Isler et al. [13], who describedtwo deterministic strategies achieving
competitive ratios of 3.14 and 2.22.

Other Related Work. Visibility-based navigation of robots involves a variety of different aspects.
For example, Efrat et al. [7] study the task of developing strategies for tracking and capturing a visible
target with known trajectory, while maintaining line-of-sight among obstacles. Kutulakos et al. [16]
consider the task of vision-guided exploration, where the robot is assumed to move about freely in
three dimensions, among various obstacles.

Our Results. In this paper, we give the first comprehensive algorithmic study of visibility-based
online exploration in the presence of scan cost, i.e., discrete vision, by considering an unknown polyg-
onal environment. This is not only interesting and novel in theory, it is also an important step in
making algorithmic methods from computational geometry more useful in practice, extending the
demonstration from the video [8].
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Our mathematical results are as follows:

• We show that there is a lower bound ofΩ(
√

n) on the competitive ratio in a rectilinear poly-
gon with holes; this is markedly higher than in the case of continuous vision, where the best
lower bound isΩ(logn). Note that this lower bound is purely combinatorial, as it only requires
coordinates that are strongly polynomial (even linear) inn.

• We demonstrate that even in extremely simple cases, a competitive strategy is only possible if
maximum and minimum edge length in the polygon are bounded, i.e., for limited resolution of
the scanning device; more precisely, we give anΩ(logA) lower bound on the competitive ratio
for the case of orthoconvex polygons that depends logarithmically on the aspect ratioA of the
region that is to be searched; if the input size of coordinates is not take into account, we get an
Ω(n) lower bound on the competitive factor.

• For the natural special case of simple rectilinear polygons (which includes almost all real-life
buildings), we provide a matching competitive strategy with performanceO(logA).

The rest of this paper is organized as follows. We start by showing that no constant competitive
ratio can be obtained for rectilinear multi-connected polygons (Section 2), even if the aspect ratio
is polynomially bounded inn. Section 3 demonstrates that even very simple classes of polygons
(orthoconvex polygons with aspect ratioA) requireO(logA) scans. On the positive side, Section 4
presents the main result of this paper: anO(logA)-competitive strategy for the watchman problem
with scan costs in simple rectilinear polygons. The final Section 5 provides some directions for future
research.

2 Polygons with Holes

In this section we establish a lower bound ofΩ(
√

n) for a rectilinear polygons withn+ 2 holes and
O(n) edges.

Theorem 1. Let P be a polygonal region with n+2 holes and O(n) edges whose lengths are multiples
of 1/10 not exceeding O(n). Then no deterministic strategy can achieve a competitive ratio better than
Ω(

√
n), even if P is rectilinear.

Proof. We constructP as a polygon with height 7n and width (n+2), and add a number of obstacles
as holes to its interior; see Figure 2 for the overall layout.

The starting point is located in the center of the left vertical side ofP. A rectangle of size 1/2×n
is immediately to its right, centered with respect to the starting point. Depending on which corner
of the opposite side the robot reaches first, a rectangle of size n× 1/2 is placed close (distanceε =
1/10) to this point with the center of its short side. In addition, a “pan-pipe”-like arrangement ofn
rectangular “pipes” is placed as shown in the figure; the exact layout may be reflected horizontally or
vertically, depending on the four possible cases of how the robot reaches one of the long sides of the
second obstacle last. In-between the pipes, we add small modifications whose exact shape depends
on the tour the robot chooses for exploration, as shown in Figure 2; these choices are made to assure
that a worst-case competitive ratio ofΩ(

√
n) cannot be beaten. See the full paper for details.
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Figure 2: First: An overview of a construction forn = 6; the gray areas indicate where the following
obstacles are inserted in order to create a worst-case scenario, depending on the tour chosen by the
robot. Second: Inserted obstacle if the robot traverses thecolumn. Third: Inserted obstacle if the
robot does not turn into the column (from the current side). Fourth: The object inserted if the robot
walks a distance ofl > n/2 into the column. Fifth: The object inserted if the robot walks a distance
of

√
n < l < n/2 into the column. Sixth: The object inserted if the robot walks a distance ofl <

√
n

into the column.

3 Why the Aspect Ratio Matters

Before developing the details of our= O(logA)-competitive strategy for a simple orthogonal polygon
with aspect ratioA, we illustrate that this is best possible, even for orthoconvex polygons that contain
a single niche, bounded by a staircase as shown in Figure 3.

Theorem 2. Let P be an orthoconvex polygon region with n edges and aspectratio A. Then no
deterministic strategy can achieve a competitive ratio better thanΩ(logA).

Proof. In an optimal solution, a single scan suffices to see the entire polygon, provided it is taken
within the strip shaded in gray. However, the robot does not know the location of this strip, as it
depends on reflex vertices of the polygon that are not visibleyet. More precisely, let [a0,b0] be the
initial interval. At the beginning, the robot with discretevision stands at some point with distance
dis to the base line of the niche and small distancedishor to the perpendicular of one of the corners
a0,b0 (w.l.o.g. a0). We divide each interval [ai ,bi ] into three intervals of equal length; only one of
the outermost intervals is open, the other two are covered with boundary, defining the new interval
[ai+1,bi+1], see Figure 3, middle.

Now it is not hard to check that for any given depthk of the construction, the resulting aspect
ratio is bounded by 5k; this implies that for any given aspect ratioA, a total number ofΩ(logA) scans
cannot be avoided to guarantee full exploration of the niche. Note that the total number of scans can
also be described asΩ(n); however, this lower bound is not purely combinatorial, as it depends on the
coding of the input size.

4 Simple Polygons

In the following we will develop our strategy for simple rectilinear polygons. We start by reviewing
the strategy GREEDY-ONLINE by Deng, Kameda, and Papadimitriou [6] that is optimal for contin-
uous vision (Section 4.1); this algorithm itself is based onproperties first established by Chin and
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Figure 3: Left: One scan in the gray strip suffices to see the entire niche. Middle: Definition of
dis,dishor,ai ,bi ,yi . Right: Computingy1 to bound the coordinate values.

Ntafos [3], focusing on critical extensions. These extensions are not known in advance, neither for
continuous nor for discrete vision; however, they are found“on the fly” for continuous vision, while
serious adjustments have to be made to establish some comparable mathematical structure for discrete
vision. This work is presented in Section 4.2; enhanced by several important additional insights and
tools (sketched in Section 4.3), we get our strategy SCANSEARCH, which is presented in Section 4.4,
with full details described in the Appendices.

In the following, we will deal with a limited aspect ratio by assuming a minimum edge length of
a; for simplicity, we assume that the cost of a scan is equal to the time the robots needs for traveling a
distance of 1.

4.1 GREEDY-ONLINE

A central idea of polygon exploration is the use of extensions (see [6].) Each extension is induced by
one or two sides of the polygonP. More precisely, at each reflex vertex we extend each sideSof P
inside the polygon until this line hits the boundary ofP. If we obtain a line segment excludingS, this
is called anextensionof S, or acut. For structuring the set of all extensions, the notion ofdomination
turns out to be useful, giving rise to different types of extensions as follows. From a starting point of
the robot, any extensionE of a sideSdivides the polygon into two sub-polygons. The starting point is
included in thehome sub-polygon defined by Eand not in theforeign polygon defined by E, to which
we will refer by FP[E]. From the starting point any sideS∈FP[E] is only visible for the robot ifE
is visited, i.e., if the robot either crosses or touches the extension.As we want to explore the entire
polygon,Smust be visible at some point of the tour; therefore, visiting E is necessary for exploring
P, which is why we call such an extensionnecessary. Moreover, it is possible that for two necessary
extensionsE1 andE2 the robot cannot reachE1 without crossingE2, as FP[E1] contains all ofE2. As
we will visit (even cross)E2 when we visitE1, we may concentrate onE1. In this caseE1 dominates
E2. A nondominated extension is called anessential extension.

The GREEDY-ONLINE algorithm of Deng et al. [6] deals with theonline watchman problem in
simple rectilinear polygons for a robot with continuous vision. The basic idea of this algorithm is
to identify the clockwise bound of the currently visible boundary; this is followed by considering a
necessary extension that is defined either by the corner incident with this bound, or by a sight-blocking
corner. This is based on the proposition of Chin and Ntafos [3] that there always exists a non-crossing
shortest path, i.e., a path that visits the critical extensions in the same circular order as the edges on the
boundary that induce them. This property is what we need to establish for the case of discrete scans.
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Chin and Ntafos [3] started with optimum watchman routes in monotone rectilinear polygons, then
extended this to rectilinear simple polygons. Without lossof generality, Chin and Ntafos presumed
the edges to be either vertical or horizontal, and monotonicity referring to they-axis. They called an
edge on the boundary as atop edgeif the interior of the polygon is located below it. Analogously,
a bottom edgeis an edge above which the interior of the polygon lies. The highest bottom edge is
namedT, the lowest top edgeH. The part of the polygon that lies aboveT is calledPt . Considering
the kernel ofPt , i.e., the part of it that can see every point ofPt , Chin and Ntafos named its bottom
boundaryKt. Analogously,Pb andKb are defined as the part of the polygon that is located belowB
and the top boundary ofPbs kernel.

When considering discrete vision, even the simplest proposition on monotone rectilinear polygons
breaks down: finding an optimum watchman route isnot necessarily equivalent to finding a shortest
path connecting the top and bottom kernels, as we need to takeinto account that some scans have to
be taken along the way. In the following, we will develop several modifications for discrete vision of
increasing difficulty that lay the foundation for our algorithm SCANSEARCH.

4.2 Modifications for Discrete Vision

In the following, avisibility path is a path with scans, along which the same area is visible for robot
with discrete vision, as it would be for a human guard with continuous vision. We will proceed by
a series of modifications to the results by Chin and Ntafos; modifications are highlighted, and the
numbering in parentheses with asterisks refers to that in [3]. Proofs are omitted because of limited
space, but can be found in Appendix A.

Lemma 3 (Lemma 1*). Finding an optimum watchman routeof a robot with discrete vision in a
monotone rectilinear polygon is equivalent to finding a shortestvisibility path that connects the top
and bottom kernels.

Just like Chin and Ntafos [3], we now focus on rectilinear simple polygons and adopt their pro-
cedure, i.e., we first partition the polygon into uniformly monotone rectilinear polygons and then
identify for each of the resulting polygonsRi the bottom edges of top kernels (Ti) and the top edges
of bottom kernels (Bi). An optimum watchman route of a robot with discrete vision does not need to
visit all the Ti andBi. Therefore, we identify the essential horizontal edges, and, after applying the
method to the polygon after a 90 degrees rotation, the essential vertical edges.

Like in the case of monotone rectilinear polygons, the portions of the polygons that lie outside of
the essentials edges will not be visited by any optimum watchman route of the considered robot and
are discarded.

Lemma 4 (Lemma 2*). If P is the original rectilinear simple polygon and P′ is the new polygon
obtained by removing the ”non-essential” portions of the polygon, then no optimum watchman route
of a robot with discrete vision will visit any point in P\P′.

This allows us to reformulate Lemma 3 of Chin and Ntafos:

Lemma 5 (Lemma 3*). Any optimum watchman routeof a robot with discrete vision in P will have
to visit the essential edges in the order in which they appearon the boundary of P′.

4.3 Developing a Competitive Strategy for a Robot with Discrete Vision

Just like in the GREEDY-ONLINE strategy by Deng et al., we start with identifying the next extension,
which is either defined byf , the bound of the contiguous visible part of the boundary, orby b, a sight-
blocking corner; then the boundary is in clockwise order, completely visible up to the extension. Now
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we merely know that the identified extension needs to be visited; with discrete vision, the optimum
does not necessarily need to perform a scan on the extension,instead it may also run beyond it. If
we search for visibility on the path to the extension, we refer to theinterval case, as we only have an
unknown interval on one (the counterclockwise) side. If we run beyond the extension, we call this the
extension case: beyond the extension the clockwise side is also unknown. For simplicity, we compare
to an optimal tour in the Manhattan metric.

As shown in the previous section, even situations that are trivial for a robot with continuous vision
may lead to serious difficulties in the case of discrete vision. This leads to the definition ofnon-
visible region(NVR), as illustrated in Figure 4 (left): without entering the gray area a watchman with
continuous vision is able to see the bold sides completely. Arobot with discrete vision is only able
to see these bold parts of the boundary if he chooses a scan point under the northernmost part of the
boundary. Such an area where not (yet) all sides which would be completely visible with continuous
vision (the bold sides) are visible for a robot with discretevision is called anon-visible region(NVR).

Figure 4: Left: If the dark gray point represent the scan position, a robot with discrete vision cannot
see the entire bold sides, resulting in a non-visible region(NVR), shown in gray; an NVR is dealt
with by performing a binary search. Right: Within a non-visible region, there may be parts that even a
robot with continuous vision may not see completely (dashed), requiring the robot to enter the NVR;
one way to deal with such a situation is the introduction of turn adjustments, when the need arises.

Now we assume that without loss of generality, the known parts of the boundary run north-south
and east-west, and the extension runs north-south. Thus, wedistinguish cases depending on whether
we run to or over an extension, and, furthermore, whether we reach the extension on an axis-parallel
path without a change of direction.

In case we move beyond an extension, two sub-cases may occur:either we are able to cover the
total planned length, or a boundary keeps us from doing so. Our strategy differs in case of a shortened
travel distance, depending on whether the boundary is closed to the south of our path, or not. If we
may cover the total distance, we draw an imaginary line parallel to the extension. Then we observe
whether the entire boundary on the opposite side of this lineis visible. If this is the case we say that the
line creation ispositive. A positive line creation implies that between the extension and the imaginary
line there is an essential extension (which may be the extension or the line itself). Otherwise we refer
to it as anegativeline creation.

Both in the interval case and the extension case, our strategy may force the robot to pass some non-
visible regions, which we are going to discover with a binarysearch strategy: we use binary search
over a maximal distance as an upper bound. This implies that the robot needs at mostk searches (2k if
we have NVRs on both sides) if the optimum usesk scans. This yields a reference point for computing
the cost of the optimum to determine an upper bound for the competitive ratio.

In some cases our robot needs to take a turn, but we do not know where the optimum turns.
Therefore, we consider the maximum possible corridor for turning, move in its center and make
adjustments to the new center whenever a width reduction appears. As soon as it is again required to
turn, we adjust to the best possible position.
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This procedure, which we call aturn adjustment, as well as the binary search are described in the
following.

Binary search in the strategy: If we are confronted with one or more non-visible regions lying in
an area already passed, we use for each possible NVR the maximum width as an upper bound, i.e., the
total width of the passed area. Within the binary search at most this maximum width (w) is reduced to
at mosta, the minimum side length:

w ·2− j∗ = a⇔ j∗ = log(
w
a

) (1)

⌈ j∗⌉

∑
j=1

w ·2− j +
⌈ j∗⌉

∑
j=1

1 = w(−2−⌈ j∗⌉ +1)+ ⌈ j∗⌉

≤ w(−2− j∗−1+1)+ j∗+1
(2)
= w(

−a
2w

+1)+ log(
w
a

)+1

= w− a
2

+ log(
w
a

)+1 . (2)

In this context, the second sum results from the scans after each move. If we have more than one
NVR, we begin with the easternmost, i.e., the one that is closest to the starting point of the move. This
may split some NVRs into several NVRs, which are all identified.

Lemma 6. If the optimum needs k scans in an interval (of width B), the robot needs at most

(i) k binary searches (for each an upper bound is given by the above value) or
(ii) 2k binary searches if the NVR may appear on two sides.

Turn adjustments: Turning may occurs in several situations. The optimum may have the oppor-
tunity to turn before the robot, following the strategy, does. Moreover, we may discover a corridor
inside a non-visible region. Finally (for non-axis-parallel motion), we may discover a corridor when
the boundary south of our path is closed. We assume that each corridor in the polygon has a minimum
corridor width and refer to it asak. With this assumption we know up to which bound we may have
to reduce the step length in a binary search.

- The optimum may turn earlier than the strategy instructs therobot to do: In this case we consider
the widthkor of the interval, in which the optimum could turn earlier, seeFigure 5.

kor

Figure 5: An interval of widthkor, in which the optimum could turn earlier.

An interval of widthkor in which an axis-parallel movement is possible may become narrower
because of the boundary. If this keeps the robot from runningaxis-parallel, the robot runs
vertically to the center of the remaining interval, etc. Thecost for this purpose is estimated by
a binary search in an interval of widthkor.

8



If during the search of the non-visible regions we realize that we need to deviate to the south
or the north from the horizontal line, i.e., if we find a corridor, we adapt to the best possible
position. We do this by taking a step smaller or equal tokor

2 (plus 1 for the scan) to gain the
best height, and we add a step to the easternmost part of the corridor if this lies to the south.

Of course the optimum does not have to turn earlier, and the possible corridor does not have to
become narrower, but if such a case may occur, we allow for thebinary search andkor

2 +1.

- A corridor is discovered inside of a non-visible region: When we discover a corridor, the NVR
does not consist of stairs or niches. If the NVR lies south, welook for the first possible eastern
corridor, otherwise for the first possible western corridor. The width of the corridor cannot
exceed the distance that we covered beyond the extensionE, and we take this distance askor.

We proceed by analogy, i.e., the robot turns up or down. If in the following it is not possible to
continue running vertical, the robot runs horizontal to thecenter of the narrower interval, and
so on. The costs are estimated by the binary search, and the adjustments are done analogously.

- A corridor is discovered, the movement is not axis-parallel, and the boundary is closed to the
south: We proceed analogously; adjustments can happen twice, first in the western area, then in
the northern area. Thus, we need two times the upper bound of the binary search inkor, kor

2 and
1.

4.4 The strategy SCANSEARCH

The full details of the resulting strategy SCANSEARCH are quite involved and described in Appendix
B. Because of limited space, we just note the following.

Theorem 7. A simple rectilinear polygons allows an O(logA)-competitive strategy.

Proof. The correctness of our strategy SCANSEARCH follows from thedetails described in Ap-
pendix B.

For an example of our strategy, see Figure 6, witha = 0.5 (< 1): The starting point is the black
point in the south of the polygon. The first extension may be achieved on a straight, axis-parallel
line, i.e., we are in case (A.). As e≥ 2a+ 1 (interval case) and no non-visible regions appear on the
counterclockwise side up toE, the robot moves directly toE and takes a scan.

The estimate for the competitive ratio is computed from the upper bounds for the competitive ratio
in the different cases, which is carried out in Appendix C. For ak = a, a∈]0,1], we get the following
values:

c≤
{

8a+34+4log(2+3/a) : a∈ ]0,0.7004344]
20a+24+4log(4+3/a) : a∈ ]0.7004344,1]

For a givena we get a constant competitive ratio that depends on log(1/a).

5 Conclusions

We have considered the online problem of exploring a polygonwith a robot that has discrete vision.
In case of a rectilinear multi-connected polygon we have seen that no strategy may have a constant
competitive ratio; even for orthoconvex polygons, it has turned out that any bound on the competitive
factor must involve the aspect ratio. Finally, we have developed a competitive strategy for simple
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Figure 6: An example for strategy SCANSEARCH. The path of therobot is plotted in gray, we use
light gray for binary searches, and dashed dark gray for parts of the path where it improves clarity.
Extensions are dotted in black, some straight connections are dotted in light gray. (For clarity, some
lines are slightly offset from their actual position.) Numbered points correspond to turns in the tour,
scan points are circled; uncircled turn points arise when navigating back from fully explored terrain.

rectilinear polygons. For this purpose it was important that we were able to order the extensions along
the optimal route of a robot without continuous vision; thisenabled us to compare the cost of the
optimum with the cost of a robot that uses our strategy.

Another question is whether there exists a competitive strategy in case of a more general class
of regions: simple polygons. In this context we face the difficulty that we do not know where the
extensions lie. Thus, we are not able to give an a-priori lower bound on the length of the optimum;
this is a serious obstacle to adapting the step length to the one of the optimum; extending the highly
complex method of Hoffmann et al. for continuous vison to thecase of discrete vision is an intriguing
and challenging problem.

Finally, it is interesting to consider the offline problem for various classes of polygons. As stated
in the introduction, even the case of simple rectilinear polygons is NP-hard; developing reasonable
approximation methods and heuristics would be both interesting in theory as well as useful in practice.
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[7] A. Efrat, H. González-Baños, S. G. Koburov, and L. Palaniappan. Optimal strategies to track and capture
a predictable target. InProc. 2003 IEEE Int. Conf. Robotics and Automation (ICRA 2003), pages 3789–
3796, Taipei, Taiwan, September 2003. IEEE.
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Appendix A: Proofs for Section 4

Proof of Lemma 2: We distinguish two cases. If the given polygon is star-shaped, the top and the bottom
kernel coincide, and any point in the kernel is an optimum watchman route for a robot.

If the given polygon is not star-shaped, and hence the top andbottom kernel do not coincide, a shortest
visibility path betweenKt andKb is an optimum watchman route:

- First no optimum watchman route of a robot with discrete vision extends aboveT (the highest bottom
edge) or belowB (the lowest top edge); in that case, we could find a shorter route as follows.

If the path to the point aboveT or belowB and the one that leaves that point are the same beyondT or
B, we move the last scan point toT or B and cut off the end of the route.

Or, if there is an angle greater than 0 between the in- and outgoing path, we construct a shorter route by
moving the last scan point toT or B (to the point with the shortest distance) and connect the newpoint
with the next scan points.

- Let S be a shortest visibility path fromKt (the bottom boundary of the kernel ofPt , the portion of the
polygon that lies aboveT,) to Kb. Every point in the polygon is visible from some point alongS: Pt and
Pb are visible from the endpoints ofS, which lie onKt or KB; a point elsewhere in the polygon must be
visible because it is visible from the corresponding path ofa robot with continuous vision (because of
the monotonicity) and the definition of a visibility path.

Then an optimum watchman route of a robot with discrete vision is formed by following this shortest
visibility path and walking backwards (without a scan if possible, i.e., if no shift in direction is needed).

Proof of Lemma 3: If the claim was not true, i.e., there was an optimum watchmanroute of a robot with
discrete vision visiting a point inP\P′, this route would cross at least one essential edge. Any point in the
section of that edge that is enclosed by the route can see the portion of the polygon that is inP\P′ so we can
make the route shorter, as we needed at least one scan inP\P′ for the former route as well. Thus, we have a
contradiction to the proposition that we have an optimum watchman route.

Proof of Lemma 4: If an optimum watchman route of a robot with discrete vision does not visit the
essential edges in this order, the route will intersect itself.

Then we can restructure this route by deleting this intersection and get a shorter route in which the pre-
specified order is followed. If an intersection appears, we must have at least four scan points on the crossing
lines, denoted these points byp1, p2, p3 andp4, as shown in the left of Figure 7.p1, . . . , p4 are located on the
paths to or from the essential edges, or on these essential edges. Without loss of generality, the essential edges
related top1, . . . , p4 lie in clockwise order on the boundary ofP′.

The following cases can occur:

1. There is no scan point between thepi on the paths. Then Figure 7 shows a route that is shorter by triangle
inequality: visitp2 directly afterp1, andp4 after p3.

2. If a scan point is located on the intersection point, we need to consider two cases:
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p3p4

p1 p2

p3p4

Figure 7: If there is no scan point between thepi , the route may be shortened like this.

(a) Either a scan point on one of the lines established in (1.)is sufficient to see all points, then the
route in (1.) plus this scan point provides lower cost than the original route.

(b) Or a scan point on one of the lines established in (1.) is not sufficient; in that case we connect two
consecutive points by a direct path and use a path via the intersection scan point for the two other
points (or if possible a path via a point in shorter distance to two of thepi).

3. If one of thepi is the intersection point, we have to consider the route moreclosely. For that purpose we
mention two properties of essential extensions in rectilinear polygons, which were stated by Deng et al.
[6].

Proposition 8 (Proposition 2.2 of Deng et al. [6]).

(i) Two distinct essential extensions are either disjoint or perpendicular to each other. (Note that the
same essential extension may be the extension of two different sides.)

(ii) Each essential extension intersects at most two other essential extensions. (If it intersects two other
essential extensions, then these two are parallel to each other.)

The general situation is as shown in Figure 8.

pj

pk

pl

path to Sj

path to Sk
path to Sl

ph

path to Sh

Figure 8: The general situation with one of thepi being the intersection point. We have
h 6= j,h 6= k,h 6= l , j 6= k, j 6= l andk 6= l .

The paths leading to (or coming from) the essential extensions may have length 0, i.e., the corresponding
pi is located on an essential extension.

(a) All paths have length 0:
Thus, allpi are located on essential extensions. The essential extension on whichp j lies must run
alongphpk, because (i) if it cutsphpk, ph or pk would lie in P\P′, and (ii) the essential extension
may not be shorter thanphpk, as running alongphp j , p j pk (independent of direction) would not
be possible otherwise. As a result,phpk is completely located on the essential extension. This
essential extension is intersected by at most two other essential extensions (see Proposition 8(ii)),
which may not intersect betweenph andpk (becausepi in P\P′.)

In the following we distinguish ifp1 , p4, or one of the pointsp2 andp3 is the intersection point.



If p1 is the intersection point,p2 may not lie beforep4 in clockwise order and the starting point
cannot be located betweenp4 andp1, which lie on the same extension, leading to a contradiction.
The same argument holds forp4 lying on p1p3.

Otherwise, i.e., ifp2 or p3 is the intersection point, these are the only points where the direction
is changed, i.e., no “real” intersection appears, and this does not touch the considered order, see
Figure 9.

S1

p1

p2

p3

p4

S3

S2

p1

p2

p3

p4

S2

S3

S4

Figure 9: Left:p2 as ”intersection” point, in case of path length = 0. Right:p3

as ”intersection” point, in case of path length = 0.

(b) At least one path has positive length:

– If p j = p2, p j = p3 or p j = p4, the route may turn once or twice.
When the robot turns only once,p j must be located on an essential extension, as a path to
Sj would cause another turn. Thus,ph and pk must be located on the same extension (see
above), and only a path toSl with positive length is possible. Thisp j does not influence the
requested order, i.e., it is not a “real” intersection point.
If the robot turns twice atp j , a loop occurs; then the robot may traverse this loop in a way
that observes the given order.

– If p j = p1, the route may only use this point twice.
If the route does not turn twice atp1, it must start there, as otherwisep2p4 is an essential
extension, and sop3 may not lie on a shortest tour, as it would be located inP\P′.
If the route turns twice, the above loop argument holds.

Proof of Lemma 5: If the optimum needsk scans (in the interval of widthB), we havek stairs or niches (see
Figure 10 for the distinction) in (i), because such stairs orniches will only be visible from the running line if a
scan is taken perpendicular under the northernmost horizontal boundary of the stairs or niche, as the boundary
runs rectilinear, see Figure 11, right side. Each of these northernmost horizontal boundaries lies inside of a
NVR. These are identified by the robot, and each NVR has a widthless or equal to the maximum width. Thus,
we need at most a binary search overw for each of them.

Figure 10: Left: Stairs. Right: Niche.

If the non-visible regions appear on two sides ((ii)), as thecase may be, we need 2k binary searches. Since
for each two NVRs a situation like in Figure 12 may occur, i.e., with our strategy the robot distinguishes the
NVRs, reaches one of the dark gray positions, where one of thenon-visible regions becomes visible, but not



B

Figure 11: An interval of width B. Scans are required under the northernmost horizontal boundary of
each stairs or niche, (bold).

Figure 12: Worst case for the scan points of the optimum (light gray) and our strategy (dark gray), if
the non-visible regions appear on two sides.

both. Thus, the robot will start another binary search. Consequently, if the optimum takesk scans, the robot
will need at most twice as many binary searches.

Appendix B: Details of Strategy SCANSEARCH

Before giving a detailed description of our strategy SCANSEARCH, we give a rough overview. First of all
we distinguish between the possibility of reaching the nextextensionE axis-parallel without a turn and the
impossibility of doing so without a change of direction.

If the distance to the extensione is big, i.e., it exceeds a value of 2a+ 1 in the former case or a value of
a+1 in the latter case, we explore the area up to it (interval case); otherwise we face theextension case.

In several cases of our strategy we run beyond the actual extension and we will then use a certain basic
structure: It is either(ii) possible to cover the total planned length, or the boundary keeps us from doing so(i).
If the former is true, we distinguish between a negative(I) and positive(II) line creation. Moreover, in case of
the impossibility of reachingE in an axis-parallel fashion without a turn, it is necessary to consider whether the
boundary is(b) or is not(a) closed south of the path whenever the boundary keeps us from covering the total
distance (i.e., whenever we face case(i)).

(i) results in running as far as possible, moving back toE, applying binary search for NVRs (up toE on one
side, beyondE on both sides) and using a corridor whenever we find one (with turn adjustments). If we were
able to cover the total planned length and draw the imaginaryline, we apply binary search and we use corridors
in southern NVRs if this results in a negative line creation.Otherwise we move back toE and start searching
for an NVR.

In this case we also distinguish(a) and (b). For (a) the polygon exploration will continue south of the
second wing of the actual axis-parallel move, i.e., its partafter executing the turn. We move as far as possible,
apply binary search on both wings (as always on paths we covered and where NVRs appeared) and make turn
adjustments. In the event of a closed boundary to the south(b) it may be necessary to apply turn adjustments
twice.

We still need to clarify when we use this basic structure.



• In the interval case with the possibility of reachingE axis-parallel without a turn, we consider the dis-
tancedi to the perpendicular of the next clockwise corner. If this exceeds a value of 2a+1, we move to
this perpendicular, otherwise we cover a distance of 2di +1 (or 2a+1 if di is smaller thana) and obtain
the basic case distinction mentioned above. There may also appear no corner on the counterclockwise
side, which will make us move toE directly.

• In the extension case with the possibility of reachingE axis-parallel without a turn, the above basic
structure can be applied immediately.

• In the interval case without the possibility of reachingE without a change of direction we also have to
differentiate between NVRs appearing up to the sight-blocking corner(β) and the absence of such NVRs
(α).

Without these NVRs(α), the distance to the sight-blocking corner (bi) is our point of reference. Again
we move to the point that determines the distance if the distance is big and walk beyond it otherwise.
Thus, if bi is bigger than 2a+ 1, we walk to the sight-blocking corner; as always when axis-parallel
moves without a turn are not possible, we cover this distancein an axis-parallel fashion; this results in
a triangle, formed by the two wings of the move together with the straight connection. Ifbi < 2a+ 1
holds, we may be able to cover a distance of 2bi + 1 and run beyondE on the second wing (A), which
yields the basic case distinction from above. In addition, the point where we have to change our direction
(pcor) may not lie inside the polygon (B). If so, we run as far as possible up to the boundary (pointpE)
and after a turn straight toE. Again, we run beyondE (resulting in the basic case distinction) or not (and
apply binary search and make turn adjustments if necessary). If neither (A) nor (B) is true, we make turn
adjustments.

With NVRs appearing up to the sight-blocking corner(β) we consider other points of reference, but the
structure is the same as in(α). The critical distancemi is the shortest distance to the intersection point of
the straight connection to the sight-blocking corner and the extension of one side of an NVR. Moreover,
the point that is equivalent topcor is calledpm.

• In the extension case without the possibility of reachingE axis-parallel without a change of direction,
we refer to the point in which the axis-parallel move toE changes the direction aspe. pE is the point
where the boundary in clockwise order has the corner andabE the distance from the actual starting point
to pE, see Figure 13.

pe

pE

abE

e

Figure 13: An example forpe, pE andabE.

The critical distance isabE. If abE is big (abE > 2a+3), we cover a distance of 2e+1 along the straight
connection in moving axis-parallel. (The distance topE allows us to do so on the first wing.) This results
again in the basic case distinction. ForabE ≤ 2a+3 we move toE via pE and (if necessary) apply binary
search and make turn adjustments.

This description applies toa ≤ 1, for a > 1 we use a similar strategy. Because of taking scans whenevera
distance ofa is covered, NVRs are explored while passing and corridors are identified immediately.



While exploring the polygon, we make sure that in clockwise order all parts of the polygon are visible after
having been passed, i.e., we make sure that we see everythinga watchman with continuous vision would see
when walking along the basic path. Areas that are not visibledefine an extension in the remaining part of the
algorithm, and we always use the next clockwise corridor. Moreover, we return to the starting point as soon as
we have seen all sides of the boundary.

Strategy 1(Online strategy SCANSEARCH for a robot with discrete vision).
INPUT: A starting position inside an unknown rectilinear polygon P, its minimum side length a, its minimum
corridor width ak.
OUTPUT: A route along which the whole polygon becomes visible for a robot with discrete vision.

We identify the next extension in analogy to the GREEDY-ONLINE algorithm of Deng et al. [6], i.e., we
update C, f and M whenever changes occur.

If f is a reflex corner, let E= Ext(F( f )). Otherwise let b be the blocking corner when f− was in view, and
let E = Ext(B(b)).

• a≤ 1

A. An axis-parallel move to E is possible without a turn:

* e≥ 2a+1: interval case
1. If di > 2a+1, move to the perpendicular of the corner.

2. If di ≤ 2a+1:
if di > a: cover a distance of2di +1;
if di ≤ a: cover a distance of2a+1;
apply binary search if necessary, i.e., if non-visible regions appear.

3. If no corner appears on the counterclockwise side, move directly to E.

If we run beyond E with a step of length2di +1/2a+1:

(i) If we do not cover the total distance, because of the boundary:
Run as far as possible, go back to E, move back in steps of length 1, apply binary search
for NVRs (on the counterclockwise side till E, on both sides beyond E); if a corridor is
identified, use it and make turn adjustments. (If a critical extension is found, search only
on the opposite side.)

(ii) If we may cover the total distance of2di +1/2a+1:
(I) negative line creation:
Apply binary search; if a corridor is discovered inside an NVR, use it and make turn ad-
justments. (Because the line creation is negative, only corridors in southern non-visible
regions are used.)
(II) positive line creation:
Go back to E, move back in steps of length 1, apply binary search and search for a cor-
ridor and the critical extension, making turn adjustments.

* e< 2a+1: extension case
Consider running a distance of2e+1.

(i) If it is not possible to run a distance of2e+1:
Run as far as possible, go back to E, move back in steps of length 1, apply binary search
for NVRs and, if a corridor is identified, use it and make turn adjustments.

(ii) If we may cover the total distance of2e+1:
(I) negative line creation.
(II) positive line creation.

B. An axis-parallel move to E is not possible without a changeof direction:



* e≥ a+1: interval case
(α): No non-visible region up to the sight-blocking corner
1. If bi > 2a+1, move axis-parallel to the corner, see Figure 14.

bi

Figure 14: If bi > 2a+ 1, the robot moves axis-parallel to the
corner.

2. If bi ≤ 2a+1, cover a distance of2bi +1 along the straight connection in moving axis-
parallel and visiting pcor, see Figure 15. If necessary, apply binary search. Apply the
binary search on the first axis-parallel line, the first wing,before leaving pcor in a right
angle to this wing and apply the binary search on the second wing afterwards.

bi

pcor

2bi + 1

Figure 15: Ifbi ≤ 2a+1, the robot moves axis-parallel to a point
in distance 2di +1, and in doing so it visitspcor.

Now distinguish the following.

(A) If we run beyond E (on the second wing, the second axis-parallel line):
(i) If it is not possible to cover the total planned length, let αi be the

distance to this boundary along the straight connection, and
(a) if the boundary is not closed south of the path, i.e., the clockwise

exploration of the polygon continues south of the second wing,
then move as far as possible, apply binary search on both wings
and make turn adjustments.

(b) if the boundary is closed south of the path, then move as far as
possible, apply binary search on both wings and apply turn
adjustments, if necessary twice, as we are in the last case ofthe
turn adjustments.

(ii) If it is possible to cover the total planned length, we distinguish:
(I) negative line creation.
(II) positive line creation.

(B) If it is not possible to run via pcor (as the boundary blocks us from doing so) and
• if we do not run beyond E in doing so:

Run to pE (see Figure 16) and then axis-parallel to the straight
connection. If necessary, apply binary search and make turnadjustments.
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Figure 16:pE is the point in which the clockwise boundary bends toE.

• if we would run beyond E:

(i) If it is not possible to cover the total planned length:
(a) If the boundary is not closed south of the path.
(b) If the boundary is closed south of the path.

(ii) If it is possible to cover the total planned length, we distinguish:

(I) negative line creation.
(II) positive line creation.

(C ) neither (A) nor (B) is true, make turn adjustments (like in the first case of the turn
adjustments).

(β): Along the boundary up to the sight-blocking corner occur non-visible regions

1. If mi > 2a+ 1, cover a distance of mi along the straight connection in moving axis-
parallel and visiting pm.

2. If mi ≤ 2a+ 1, cover a distance of2mi + 1 along the straight connection in moving
axis-parallel and apply binary search if necessary.

In (2.) several cases may occur:
(A) If we run beyond E (on the second wing, the second axis-parallel line):

(i) If it is not possible to cover the total planned length:
(a) If the boundary is not closed south of the path.
(b) If the boundary is closed south of the path.

(ii) If it is possible to cover the total planned length, we distinguish:

(I) negative line creation.
(II) positive line creation.

(B) If it is not possible to run via pm (as the boundary hinders us to do so) and
• if we will not run beyond E in doing so:

Run to pE and then axis-parallel to the straight connection. If necessary
apply binary search and make turn adjustments.

• if we run beyond E:

(i) If it is not possible to cover the total planned length:
(a) If the boundary is not closed south of the path.
(b) If the boundary is closed south of the path.

(ii) If it is possible to cover the total planned length, we distinguish:

(I) negative line creation.
(II) positive line creation.

(C ) If neither (A) nor (B) is true, make turn adjustments.

* e< a+1: extension case

• If abE ≤ 2a+3, move to E via pE. If necessary apply binary search and turn adjustments
of the first kind.



• If abE > 2a+3, cover a distance of2e+1 along the straight connection in moving axis-
parallel. This is possible as abE > 2a+3.
Several cases may occur when we want to cover a distance of2e+ 1 along the straight
connection in moving axis-parallel:

(i) If it is not possible to cover the total planned length, let eb be the
distance to this boundary along the straight connection, and

(a) if the boundary is not closed south of the path
(b) if the boundary is closed south of the path.

(ii) If it is possible to cover the total planned length, we distinguish:

(I) negative line creation.
(II) positive line creation.

• a > 1
Identify the next extension and consider the possibility toreach it in an axis-parallel fashion without a
change of direction, as well as the distinction between the interval and the extension case.

A. An axis-parallel move to E is possible without a turn:

* interval case
Move to E and take a scan each time a distance of a is covered. Inaddition, scan on E if
scanning with distance of a does not result in a scan on E.

* extension case
If possible, cover a distance of2e+ 1; in doing so, take a scan each time a distance of a is
covered. If a corridor is discovered to the south of the running line, use it.
If it is not possible to cover a distance of2e+ 1, run as far as possible (taking a scan each
time a distance of a is covered), use a southern corridor, or,if no southern corridor exists,
move back to the clockwise first northern corridor.

B. An axis-parallel move to E is not possible without a changeof direction:

* interval case
Cover a distance of e along the straight connection in movingaxis-parallel, taking a scan
whenever a distance of a is covered as well as at the turn and onE.

* extension case
Cover a distance of2e+ 1 along the straight connection in moving axis-parallel, taking a
scan whenever a distance of a is covered, as well as when the direction is changed and when
the distance is covered.
If it is not possible to cover the total planned length, move as far as possible and take the
scans in analogy to the move described above.
Use a southern corridor as well as a western or northern one, when the total possible distance
is covered.

Move to the easternmost northern NVR with a corridor if no corridor appears in the other non-visible
regions, if E is passed and if there is no negative line creation. If everything is visible between the beginning
and the end of the current case, stop applying binary search,the steps of length 1 etc., and continue with
identifying the next extension.

Appendix C: Computing the Competitive Ratio

For an illustration, Table 1 shows the competitive values that strategy SCANSEARCH achieves forak = a.
For computing these estimates, we compare the numerous cases of strategy SCANSEARCH with the op-

timum, resulting in the values listed in Tables 2 and 3. Several of these bounds are dominated, e.g., the value
for k = 0 is less than the value fork > 0 in the same case. These dominating values are printed bold,and, for
dominated values withk > 0, the dominating term is labeled in parentheses.



a upper bound forc

1 55.2294
0.9 53.2294
0.8 51.8168
0.7 50.2083
0.6 50.0294
0.5 50.0000
0.4 50.1917
0.3 50.7399
0.2 51.9499
0.1 54.8000
0.01 67.0336
0.001 80.2148
0.0001 93.4919
0.00001 106.7785
0.000001 120.0661

Table 1: Values fora and the corresponding upper bound for the competitive ratio.
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ln( 4a+3
a )

ln(2)
(6)

(5): 14a− ak
2 +27+

ln

(

2(a+1)
ak

)

ln(2)
+2

ln( 4a+3
a )

ln(2)

Table 2: The upper bounds for the competitive ratio in the different cases.



c≤ k = 0 k > 0

B., 4

e≥ a+1, 5a− ak
2 +12+

ln

(

2(a+1)
ak

)

ln(2)
(6): 12a− ak

2 +18+
ln

(

2(a+1)
ak

)

ln(2)
+2

ln( 4a+3
a )

ln(2)

(α) (7): 15a− ak
2 + 35

2 +
ln( 4a+3

ak )
ln(2)

+2
ln( 4a+3

a )
ln(2)

−ak+
47
2 +2

ln( 4a+3
ak )

ln(2)
21a−ak+

47
2 +2

ln( 4a+3
ak )

ln(2)
+2

ln( 2a+3
a )

ln(2)
(14)

8a−ak+17+2
ln

(

2(a+1)
ak

)

ln(2) (8): 15a−ak+21+2
ln( 4a+3

a )
ln(2) +2

ln

(

2(a+1)
ak

)

ln(2)

12a−ak+
35
2 +2

ln( 4a+3
a )

ln(2)
+

ln

(

2(a+1)
ak

)

ln(2)
(10)

12a− ak
2 + 29

2 +
ln( 4a+3

ak )
ln(2)

(9): 19a− ak
2 + 43

2 +
ln( 4a+3

ak )
ln(2)

+2
ln( 4a+3

a )
ln(2)

23
8 a− ak

4 + 35
4 + 1

2

ln

(

3(a+1)
ak

)

ln(2) (10): 41
4 a− ak

4 + 35
4 +2

ln( 4a+3
a )

ln(2) + 1
2

ln

(

3(a+1)
ak

)

ln(2)

7a− ak
4 + 41

4 + 1
2

ln( 4a+3
ak )

ln(2)
(11): 14a− ak

4 + 57
4 +2

ln( 4a+3
a )

ln(2)
+ 1

2

ln( 4a+3
ak )

ln(2)

−ak+24+2
ln( 4a+3

ak )
ln(2)

(12): 21a−ak+24+2
ln( 4a+3

a )
ln(2)

+2
ln( 4a+3

ak )
ln(2)

7
2a− ak

2 +17+
ln( 4a+3

ak )
ln(2)

15a− ak
2 +17+2

ln( 4a+3
a )

ln(2)
+

ln( 4a+3
ak )

ln(2)
(11)

B., 4

e≥ a+1, 4 (13): 3a+10+2
ln( a+1

a )
ln(2)

(β) 5a+12+
ln

(

2(a+1)
ak

)

ln(2) (14): 8a− ak
2 +16+2

ln( a+1
a )

ln(2) +
ln

(

2(a+1)
ak

)

ln(2)

5
2a− ak

4 +6+ 1
2

ln

(

2(a+1)
ak

)

ln(2)
19
2 a− ak

4 +10+ 1
2

ln

(

2(a+1)
ak

)

ln(2)
+2

ln( 4a+3
a )

ln(2)
(17)

7
2a− ak

4 +8+ 1
2

ln

(

2(a+1)
ak

)

ln(2)
(15): 21

2 a− ak
4 +10+ 1

2

ln

(

2(a+1)
ak

)

ln(2)
+2

ln( 4a+3
a )

ln(2)

8a− ak
2 +17+2

ln

(

2(a+1)
ak

)

ln(2)
(16): 15a− ak

2 +21+2
ln

(

2(a+1)
ak

)

ln(2)
+2

ln( 4a+3
a )

ln(2)

5a− ak
2 + 25

2 +
ln

(

2(a+1)
ak

)

ln(2) (17): 12a− ak
2 + 33

2 +
ln

(

2(a+1)
ak

)

ln(2) +2
ln( 4a+3

a )
ln(2)

B., 7a− ak
2 + 29

2 +
ln( 2a+3

ak )
ln(2)

(18): 10a− ak
2 + 43

2 +2
ln( 2a+3

ak )
ln(2)

+2
ln( 2a+3

a )
ln(2)

e< a+1 − ak
2 + 35

2 +
ln( 2a+3

ak )
ln(2) 4a− ak

2 + 35
2 +2

ln( 2a+3
a )

ln(2) +
ln( 2a+3

ak )
ln(2) (20)

−ak+34+2
ln( 2a+3

ak )
ln(2)

(19): 9a−ak+34+2
ln( 2a+3

ak )
ln(2)

+2
ln( 2a+3

a )
ln(2)

6a−ak+18+2
ln( a+2

ak )
ln(2)

9a−ak+22+2
ln( a+2

ak )
ln(2)

+2
ln( 2a+3

a )
ln(2)

(24)

4a−ak+18+2
ln( a+2

ak )
ln(2)

(20): 7a− ak
2 +18+

ln( a+2
ak )

ln(2)
+2

ln( 2a+3
a )

ln(2)

Table 3: The upper bounds for the competitive ratio in the different cases.


