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Abstract

With the advent of autonomous robots with two- and threeedlisional scanning capabilities,
classical visibility-based exploration methods from catgpional geometry have gained in prac-
tical importance. However, real-life laser scanning offusaccuracy does not allow the robot to
scan continuously while in motion; instead, it has to stophedme it surveys its environment.
This requirement was studied by Fekete, Klein and Niclotethie subproblem of looking around
a corner, but until now has not been considered for wholeguoigl regions.

We give the first comprehensive algorithmic study for thipariant algorithmic problem that
combines stationary art gallery-type aspects with watchtype issues in an online scenario. We
show that there is a lower bound@f\/n) on the competitive ratio in an orthogonal polygon with
holes; we also demonstrate that even for orthoconvex paly,gocompetitive strategy can only be
achieved for limited aspect rathy i.e., for a given lower bound on the size of an edge. Our main
result is anO(logA)-competitive strategy for simple rectilinear polygons,iethis best possible
up to constants.

Keywords: Searching, scan cost, visibility problems, watchman @ois, online searching, com-
petitive strategies, autonomous mobile robots.
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Figure 1: Left: The autonomous mobile robot Kurt3D equipp&ith the 3D scanner. Top right: The
AIS 3D laser range finder. Its technical basis is a SICK 2Drlagege finder (LMS-200). (Both
images used with kind permission by Andreas Nichter, sEg)[2

1 Introduction

Visibility Problems: Old and New. The study of geometric problems that are based on visildity
well-established field within computational geometry. Tin@n motivation is guarding, searching, or
exploring a given region (known or unknown) by stationaryrmbile guards.

In recent years, the development of real-world autonomobsts has progressed to the point
where actual visibility-based guarding, searching, anuaring become very serious practical chal-
lenges, offering new perspectives for the application gbathmic solutions. However, some of the
technical constraints that are present in real life have Igpeored in theory; taking them into account
gives rise to new algorithmic challenges, necessitatimthéu research on the theoretical side, and
also trigerring closer interaction between theory andtirac

One technical novelty that has lead to new possibilitiesdardands is the development of high-
resolution 3D laser scanners that are now being used inicgsbgee Figure 1 for an image and [21]
for technical details. By merging several 3D scans, thetr&loot3D builds a virtual 3D environment
that allows it to navigate, avoid obstacles, and detectobb]d 8]; this makes visibility problems quite
practical, as actually using good trajectories is now fmssind desirable. However, while human
mobile guards are generally assumed to have full visionldinaés, Kurt3D has to stop each time
it scans the environment, taking in the order of several rsgxdor doing so; the typical travel time
between scans is in the same order of magnitude, makingeseacy to balance the number of scans
with the length of travel, and requiring a combination ofedp of stationary art gallery problems
with the dynamic challenge of finding a short tour.

In this paper, we give the first comprehensive study of thaltieg Online Watchman Problem
with Discrete VisiofOWPDV) of exploring all of an unknown region in the presenta fixed cost
for each scan. We focus on the case of rectilinear polygohihas particularly relevant for practical
applications, as it includes almost all real-life buildingWe show that the problem is considerably
more malicious in the presence of holes than known for thesalal watchman problem; moreover,
we demonstrate that even for extremely simple classes §fpok, the competitive ratio depends
on the resolution of scans, i.e., on the aspect rataj the region. Most remarkably, we are able to
develop an algorithm for the case of simple rectilinear golys that has competitive rat(logA),
which is best possible.



Classical Related Work. Using a fixed set of positions for guarding a known polygomgiion is
the classicahrt gallery problem[4, 19]. Note that Schuchardt and Hecker [20] showed thairfgnd
a minimum cardinality set of guards is NP-hard, even for apénmectilinear region; quite easily,
this also implies that the offline version of our problem (miom watchman problem with discrete
vision) is also NP-hard, even in simple rectilinear polygion

Finding a short tour along which one mobile guard can see engiggion in its entirety is the
watchman problemsee Mitchell[17] for a survey. Chin and Ntafos [3] showedtthuch a watchman
route can be found in polynomial time in a simple rectilinpalygon, while others [22, 23, 2] found
polynomial-time algorithms for general simple polygonspering all of an unknown region is the
online watchman problent-or a simple polygon, Hoffmann et al.[10] achieved a cartstampetitive
ratio of c = 26.5, while Albers et al. [1] showed that no constant competifactor exists for a region
with holes and unbounded aspect ratio. For simple recitipolygons, and distance traveled being
measured according to the Euclidean metric, the best knowerlbound on the competitive ratio is
5/4, as shown by Kleinberg [15]; if distance traveled is nuead according to the Manhattan metric,
Deng et al. [6] gave an online algorithm for finding an optimwatchman route (i.ec = 1); note
that our approach for the problem with discrete vision iglpdrased on this GREEDY-ONLINE
algorithm, but needs considerable additional work.

Kalyanasundaram and Pruhs [14] considered the explorptimimiem in graphs and gave a com-
petitive factor of 18. Another online scenario that has bsidied is the question of how to look
around a corner: given a starting position, and a known migtd@o a corner, how should one move in
order to see a hidden object (or the other part of the wall)uackly as possible? This problem was
solved by Icking et al.[11, 12], who show that an optimaltetggt has competitive factor of 1.2121. ...

Searching with Discrete Penalties. In the presence of a cost for each discrete scan, any optimal
tour consists of a polygonal path, with the total cost beifigesr combination of the path length and
the number of vertices in the path. A somewhat related proldesearching for an object on a line in
the presence of turn cost [5], which turns out to be a gerzatidin of the linear search problem.

Somewhat surprisingly, scan cost (however small it may @e$es a crucial difference to the well-
studied case without scan cost, even in the limit of infimitedly small scan times: quite recently,
Fekete et al. [9] have established an asymptotically optoompetitive ratio of 2 for the problem
of looking around a corner with scan cost, as opposed to ttimalpratio of 1.2121.. . without scan
cost, cited above. Other authors who have considered thaepnoof looking around a corner in
the presence of scan cost are Isler et al. [13], who desctibedleterministic strategies achieving
competitive ratios of 3.14 and 2.22.

Other Related Work. Visibility-based navigation of robots involves a variefydifferent aspects.
For example, Efrat et al. [7] study the task of developingtstgies for tracking and capturing a visible
target with known trajectory, while maintaining line-afst among obstacles. Kutulakos et al. [16]
consider the task of vision-guided exploration, where thimt is assumed to move about freely in
three dimensions, among various obstacles.

Our Results. In this paper, we give the first comprehensive algorithmidgtof visibility-based
online exploration in the presence of scan cost, i.e., €isarision, by considering an unknown polyg-
onal environment. This is not only interesting and novelhiadry, it is also an important step in
making algorithmic methods from computational geometryrenaseful in practice, extending the
demonstration from the video [8].



Our mathematical results are as follows:

» We show that there is a lower bound @f,/n) on the competitive ratio in a rectilinear poly-
gon with holes; this is markedly higher than in the case oftinoous vision, where the best
lower bound i2(logn). Note that this lower bound is purely combinatorial, as iyaequires
coordinates that are strongly polynomial (even linean).in

* We demonstrate that even in extremely simple cases, a ¢iivgpstrategy is only possible if
maximum and minimum edge length in the polygon are bounded for limited resolution of
the scanning device; more precisely, we givekgiogA) lower bound on the competitive ratio
for the case of orthoconvex polygons that depends logaiGtiip on the aspect ratié of the
region that is to be searched; if the input size of coordmaeot take into account, we get an
Q(n) lower bound on the competitive factor.

 For the natural special case of simple rectilinear polgg@which includes almost all real-life
buildings), we provide a matching competitive strategyhvgierformanceéd(logA).

The rest of this paper is organized as follows. We start byaigthat no constant competitive
ratio can be obtained for rectilinear multi-connected pgolys (Section 2), even if the aspect ratio
is polynomially bounded im. Section 3 demonstrates that even very simple classes pfgmud
(orthoconvex polygons with aspect ra#) requireO(logA) scans. On the positive side, Section 4
presents the main result of this paper: @fiogA)-competitive strategy for the watchman problem
with scan costs in simple rectilinear polygons. The finalti®ac provides some directions for future
research.

2 Polygons with Holes

In this section we establish a lower bound®f,/n) for a rectilinear polygons witim+ 2 holes and
O(n) edges.

Theorem 1. Let P be a polygonal region with-n2 holes and @n) edges whose lengths are multiples
of 1/10 not exceeding @). Then no deterministic strategy can achieve a competititie better than
Q(y/n), even if P is rectilinear.

Proof. We construcP as a polygon with heightrvand width 6+ 2), and add a number of obstacles
as holes to its interior; see Figure 2 for the overall layout.

The starting point is located in the center of the left vaitgide ofP. A rectangle of size 22x n
is immediately to its right, centered with respect to thetstg point. Depending on which corner
of the opposite side the robot reaches first, a rectanglezefnsk 1/2 is placed close (distanee=
1/10) to this point with the center of its short side. In aiddit a “pan-pipe”-like arrangement of
rectangular “pipes” is placed as shown in the figure; the telegout may be reflected horizontally or
vertically, depending on the four possible cases of how dhetrreaches one of the long sides of the
second obstacle last. In-between the pipes, we add smalfioaidns whose exact shape depends
on the tour the robot chooses for exploration, as shown iarEig; these choices are made to assure
that a worst-case competitive ratio@f./n) cannot be beaten. See the full paper for details.
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Figure 2: First: An overview of a construction for= 6; the gray areas indicate where the following
obstacles are inserted in order to create a worst-casersgeti@pending on the tour chosen by the
robot. Second: Inserted obstacle if the robot traversesdhemn. Third: Inserted obstacle if the
robot does not turn into the column (from the current side)urkh: The object inserted if the robot
walks a distance df > n/2 into the column. Fifth: The object inserted if the robot kgah distance
of v/n < | < n/2 into the column. Sixth: The object inserted if the robotksea distance of < \/n
into the column.

3 Why the Aspect Ratio Matters

Before developing the details of otrO(logA)-competitive strategy for a simple orthogonal polygon
with aspect ratidd, we illustrate that this is best possible, even for ortheegrpolygons that contain
a single niche, bounded by a staircase as shown in Figure 3.

Theorem 2. Let P be an orthoconvex polygon region with n edges and agpéot A. Then no
deterministic strategy can achieve a competitive ratiddsehanQ(logA).

Proof. In an optimal solution, a single scan suffices to see theeeptitygon, provided it is taken
within the strip shaded in gray. However, the robot does matwkthe location of this strip, as it
depends on reflex vertices of the polygon that are not visibte More precisely, letdy, bg] be the
initial interval. At the beginning, the robot with discretésion stands at some point with distance
dis to the base line of the niche and small distadi®,, to the perpendicular of one of the corners
ag, by (w.l.o.g. ap). We divide each intervald,bj] into three intervals of equal length; only one of
the outermost intervals is open, the other two are coverdd bdundary, defining the new interval
[@i11,bi.1], see Figure 3, middle.

Now it is not hard to check that for any given detlof the construction, the resulting aspect
ratio is bounded by'5 this implies that for any given aspect raf\pa total number of2(logA) scans
cannot be avoided to guarantee full exploration of the nidtate that the total number of scans can
also be described &%(n); however, this lower bound is not purely combinatorial takepends on the
coding of the input size. O

4 Simple Polygons
In the following we will develop our strategy for simple riictear polygons. We start by reviewing

the strategy GREEDY-ONLINE by Deng, Kameda, and Papadniti6] that is optimal for contin-
uous vision (Section 4.1); this algorithm itself is basedpooperties first established by Chin and
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Figure 3: Left: One scan in the gray strip suffices to see thigeeniche. Middle: Definition of
dis, dishor, &, by, yi. Right: Computingy; to bound the coordinate values.

Ntafos [3], focusing on critical extensions. These ext@msiare not known in advance, neither for
continuous nor for discrete vision; however, they are fotordthe fly” for continuous vision, while
serious adjustments have to be made to establish some caltgarathematical structure for discrete
vision. This work is presented in Section 4.2; enhanced bgragéimportant additional insights and
tools (sketched in Section 4.3), we get our strategy SCANSEH, which is presented in Section 4.4,
with full details described in the Appendices.

In the following, we will deal with a limited aspect ratio bgguming a minimum edge length of
a; for simplicity, we assume that the cost of a scan is equdlddiime the robots needs for traveling a
distance of 1.

4.1 GREEDY-ONLINE

A central idea of polygon exploration is the use of extensi(see [6].) Each extension is induced by
one or two sides of the polygdh. More precisely, at each reflex vertex we extend each SiofeP
inside the polygon until this line hits the boundaryroflf we obtain a line segment excludir®) this
is called arextensiorof S, or acut For structuring the set of all extensions, the notiodafination
turns out to be useful, giving rise to different types of esiens as follows. From a starting point of
the robot, any extensidh of a sideSdivides the polygon into two sub-polygons. The startingnp
included in thehome sub-polygon defined byad not in theforeign polygon defined by, Eo which
we will refer by FPE]. From the starting point any side=FP[E] is only visible for the robot ifE
is visited i.e., if the robot either crosses or touches the extensi@we want to explore the entire
polygon, S must be visible at some point of the tour; therefore, vigitihis necessary for exploring
P, which is why we call such an extensioecessaryMoreover, it is possible that for two necessary
extensiong; andE; the robot cannot reads; without crossinge,, as FPE;] contains all ofE,. As
we will visit (even crosskE, when we visitE;, we may concentrate di,. In this casee; dominates
E,. A nondominated extension is called @ssential extension

The GREEDY-ONLINE algorithm of Deng et al. [6] deals with tbeline watchman problem in
simple rectilinear polygons for a robot with continuousimis The basic idea of this algorithm is
to identify the clockwise bound of the currently visible Ingiary; this is followed by considering a
necessary extension that is defined either by the cornefantwith this bound, or by a sight-blocking
corner. This is based on the proposition of Chin and Ntafpthg there always exists a non-crossing
shortest path, i.e., a path that visits the critical extamsin the same circular order as the edges on the
boundary that induce them. This property is what we needtabksh for the case of discrete scans.
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Chin and Ntafos [3] started with optimum watchman routes @matone rectilinear polygons, then
extended this to rectilinear simple polygons. Without loggenerality, Chin and Ntafos presumed
the edges to be either vertical or horizontal, and monotiynieferring to they-axis. They called an
edge on the boundary as@p edgeif the interior of the polygon is located below it. Analogbys
a bottom edgeas an edge above which the interior of the polygon lies. Thghést bottom edge is
namedT, the lowest top edgkl. The part of the polygon that lies aboVes calledP,. Considering
the kernel ofR, i.e., the part of it that can see every pointRf Chin and Ntafos named its bottom
boundaryK;. Analogously,R, andK} are defined as the part of the polygon that is located b&ow
and the top boundary &,s kernel.

When considering discrete vision, even the simplest piipon monotone rectilinear polygons
breaks down: finding an optimum watchman routeasnecessarily equivalent to finding a shortest
path connecting the top and bottom kernels, as we need tartkaccount that some scans have to
be taken along the way. In the following, we will develop sevenodifications for discrete vision of
increasing difficulty that lay the foundation for our alghrn SCANSEARCH.

4.2 Modifications for Discrete Vision

In the following, avisibility pathis a path with scans, along which the same area is visibleotmwtr
with discrete vision, as it would be for a human guard withtcarous vision. We will proceed by
a series of modifications to the results by Chin and Ntafosglifitations are highlighted, and the
numbering in parentheses with asterisks refers to that]inf8ofs are omitted because of limited
space, but can be found in Appendix A.

Lemma 3 (Lemma 1*) Finding an optimum watchman routd# a robot with discrete vision in a
monotone rectilinear polygon is equivalent to finding a sestvisibility path that connects the top
and bottom kernels.

Just like Chin and Ntafos [3], we now focus on rectilinear @ienpolygons and adopt their pro-
cedure, i.e., we first partition the polygon into uniformlyonotone rectilinear polygons and then
identify for each of the resulting polygori® the bottom edges of top kernel§)(and the top edges
of bottom kernelsH;). An optimum watchman route of a robot with discrete visiaes not need to
visit all the T; andB;. Therefore, we identify the essential horizontal edgesd, after applying the
method to the polygon after a 90 degrees rotation, the eabeettical edges.

Like in the case of monotone rectilinear polygons, the pasiof the polygons that lie outside of
the essentials edges will not be visited by any optimum wagtzhroute of the considered robot and
are discarded.

Lemma 4 (Lemma 2*) If P is the original rectilinear simple polygon and B the new polygon
obtained by removing the "non-essential” portions of théygon, then no optimum watchman route
of arobot with discrete vision will visit any point in P\ P'.

This allows us to reformulate Lemma 3 of Chin and Ntafos:

Lemma 5 (Lemma 3*) Any optimum watchman rout# a robot with discrete vision in P will have
to visit the essential edges in the order in which they appeahe boundary of P
4.3 Developing a Competitive Strategy for a Robot with Disagte Vision

Just like in the GREEDY-ONLINE strategy by Deng et al., wetstath identifying the next extension,
which is either defined by, the bound of the contiguous visible part of the boundariayds, a sight-
blocking corner; then the boundary is in clockwise ordemptetely visible up to the extension. Now
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we merely know that the identified extension needs to beedsivith discrete vision, the optimum
does not necessarily need to perform a scan on the extemsst@ad it may also run beyond it. If
we search for visibility on the path to the extension, werefgheinterval case as we only have an
unknown interval on one (the counterclockwise) side. If wielbeyond the extension, we call this the
extension casebeyond the extension the clockwise side is also unknownsiRplicity, we compare
to an optimal tour in the Manhattan metric.

As shown in the previous section, even situations that aialtfor a robot with continuous vision
may lead to serious difficulties in the case of discrete wisidhis leads to the definition afon-
visible region(NVR), as illustrated in Figure 4 (left): without enteringetgray area a watchman with
continuous vision is able to see the bold sides completelyob®t with discrete vision is only able
to see these bold parts of the boundary if he chooses a saainupoier the northernmost part of the
boundary. Such an area where not (yet) all sides which woellcbinpletely visible with continuous
vision (the bold sides) are visible for a robot with discregon is called anon-visible regior(NVR).

Figure 4: Left: If the dark gray point represent the scantpmsi a robot with discrete vision cannot
see the entire bold sides, resulting in a non-visible regdviR), shown in gray; an NVR is dealt
with by performing a binary search. Right: Within a non-kisiregion, there may be parts that even a
robot with continuous vision may not see completely (daghedjuiring the robot to enter the NVR;
one way to deal with such a situation is the introduction af tadjustments, when the need arises.

Now we assume that without loss of generality, the knownspaifrthe boundary run north-south
and east-west, and the extension runs north-south. Thudistileguish cases depending on whether
we run to or over an extension, and, furthermore, whethereaelr the extension on an axis-parallel
path without a change of direction.

In case we move beyond an extension, two sub-cases may @ither we are able to cover the
total planned length, or a boundary keeps us from doing sostategy differs in case of a shortened
travel distance, depending on whether the boundary is d¢ltsséhe south of our path, or not. If we
may cover the total distance, we draw an imaginary line p&rid the extension. Then we observe
whether the entire boundary on the opposite side of thigdimesible. If this is the case we say that the
line creation igositive A positive line creation implies that between the extemsiod the imaginary
line there is an essential extension (which may be the exteis the line itself). Otherwise we refer
to it as anegativeline creation.

Both in the interval case and the extension case, our syratag force the robot to pass some non-
visible regions, which we are going to discover with a binsgarch strategy: we use binary search
over a maximal distance as an upper bound. This impliesheatibot needs at mossearches (Rif
we have NVRs on both sides) if the optimum ukegans. This yields a reference point for computing
the cost of the optimum to determine an upper bound for thepetitive ratio.

In some cases our robot needs to take a turn, but we do not krimwevihe optimum turns.
Therefore, we consider the maximum possible corridor fonitig, move in its center and make
adjustments to the new center whenever a width reductioeappAs soon as it is again required to
turn, we adjust to the best possible position.



This procedure, which we calltarn adjustmentas well as the binary search are described in the
following.

Binary search in the strategy If we are confronted with one or more non-visible regioriadyin
an area already passed, we use for each possible NVR the oraxiidth as an upper bound, i.e., the
total width of the passed area. Within the binary search &t mtihis maximum widthw) is reduced to
at mosta, the minimum side length:

W-Z*j*:a@j*:log(\g) (1)
[ 0
w24 51 = w2041 47j9
=1 =1
< w2441
@ 2 w
= w(2W+1)+Iog(a)+1
a w
= w—§+log(a)+1 . 2

In this context, the second sum results from the scans aftdr move. If we have more than one
NVR, we begin with the easternmost, i.e., the one that isslo® the starting point of the move. This
may split some NVRs into several NVRs, which are all idertifie

Lemma 6. If the optimum needs k scans in an interval (of width B), thmtmeeds at most

(i) k binary searches (for each an upper bound is given by tieva value) or
(i) 2k binary searches if the NVR may appear on two sides.

Turn adjustments: Turning may occurs in several situations. The optimum rmeehthe oppor-
tunity to turn before the robot, following the strategy, doé/oreover, we may discover a corridor
inside a non-visible region. Finally (for non-axis-paghlinotion), we may discover a corridor when
the boundary south of our path is closed. We assume that eadtiar in the polygon has a minimum
corridor width and refer to it agx. With this assumption we know up to which bound we may have
to reduce the step length in a binary search.

- The optimum may turn earlier than the strategy instructg¢tet to do In this case we consider
the widthkor of the interval, in which the optimum could turn earlier, $ggure 5.

_

Figure 5: An interval of widthkor, in which the optimum could turn earlier.

An interval of widthkor in which an axis-parallel movement is possible may beconmewar
because of the boundary. If this keeps the robot from runaixig-parallel, the robot runs
vertically to the center of the remaining interval, etc. Tost for this purpose is estimated by
a binary search in an interval of widkor.



If during the search of the non-visible regions we realiz thie need to deviate to the south
or the north from the horizontal line, i.e., if we find a cootdwe adapt to the best possible
position. We do this by taking a step smaller or equakr?é (plus 1 for the scan) to gain the
best height, and we add a step to the easternmost part ofrttiéocaf this lies to the south.

Of course the optimum does not have to turn earlier, and thsilple corridor does not have to
become narrower, but if such a case may occur, we allow fobitiery search anél%r + 1.

- A corridor is discovered inside of a non-visible regidhen we discover a corridor, the NVR
does not consist of stairs or niches. If the NVR lies south|oe& for the first possible eastern
corridor, otherwise for the first possible western corriddhe width of the corridor cannot
exceed the distance that we covered beyond the exteBsiand we take this distance kasr.

We proceed by analogy, i.e., the robot turns up or down. lhefollowing it is not possible to
continue running vertical, the robot runs horizontal to ¢teater of the narrower interval, and
so on. The costs are estimated by the binary search, andjtietradnts are done analogously.

- A corridor is discovered, the movement is not axis-parabeld the boundary is closed to the
south We proceed analogously; adjustments can happen twicanfitee western area, then in
the northern area. Thus, we need two times the upper bouhe ditary search ikor, % and
1.

4.4 The strategy SCANSEARCH

The full details of the resulting strategy SCANSEARCH argaginvolved and described in Appendix
B. Because of limited space, we just note the following.

Theorem 7. A simple rectilinear polygons allows an(fogA)-competitive strategy.

Proof. The correctness of our strategy SCANSEARCH follows from dle¢ails described in Ap-
pendix B.

For an example of our strategy, see Figure 6, with 0.5 (< 1): The starting point is the black
point in the south of the polygon. The first extension may He@esed on a straight, axis-parallel
line, i.e., we are in casé)(). Ase > 2a+ 1 (interval case) and no non-visible regions appear on the
counterclockwise side up , the robot moves directly tB and takes a scan.

The estimate for the competitive ratio is computed from fygan bounds for the competitive ratio
in the different cases, which is carried out in Appendix C: &0= a, a €]0, 1], we get the following
values:

< 8a+34+4log(2+3/a) : ac]0,0.7004344
— | 20a+24+4log(4+3/a) : ac]0.70043441]

For a givena we get a constant competitive ratio that depends ofillc. O

5 Conclusions

We have considered the online problem of exploring a polygith a robot that has discrete vision.
In case of a rectilinear multi-connected polygon we haven $kat no strategy may have a constant
competitive ratio; even for orthoconvex polygons, it haséa out that any bound on the competitive
factor must involve the aspect ratio. Finally, we have dayetl a competitive strategy for simple
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starting point

Figure 6: An example for strategy SCANSEARCH. The path ofrtitmot is plotted in gray, we use
light gray for binary searches, and dashed dark gray fosparthe path where it improves clarity.
Extensions are dotted in black, some straight connectiong@tted in light gray. (For clarity, some
lines are slightly offset from their actual position.) Nuened points correspond to turns in the tour,
scan points are circled; uncircled turn points arise whetigadéing back from fully explored terrain.

rectilinear polygons. For this purpose it was important i@ were able to order the extensions along
the optimal route of a robot without continuous vision; thisabled us to compare the cost of the
optimum with the cost of a robot that uses our strategy.

Another question is whether there exists a competitivaegiyain case of a more general class
of regions: simple polygons. In this context we face the ditfy that we do not know where the
extensions lie. Thus, we are not able to give an a-priori tdweeind on the length of the optimum;
this is a serious obstacle to adapting the step length tortebthe optimum; extending the highly
complex method of Hoffmann et al. for continuous vison todase of discrete vision is an intriguing
and challenging problem.

Finally, it is interesting to consider the offline problenr f@rious classes of polygons. As stated
in the introduction, even the case of simple rectilinearygohs is NP-hard; developing reasonable
approximation methods and heuristics would be both intieiges theory as well as useful in practice.
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Appendix A: Proofs for Section 4

Proof of Lemma 2: We distinguish two cases. If the given polygon is star-sdapiee top and the bottom
kernel coincide, and any point in the kernel is an optimuntivatan route for a robot.

If the given polygon is not star-shaped, and hence the topbattdm kernel do not coincide, a shortest
visibility path betweerkK; andKy is an optimum watchman route:

- First no optimum watchman route of a robot with discretéoriextends abové (the highest bottom
edge) or belowB (the lowest top edge); in that case, we could find a shortdéerasifollows.

If the path to the point aboVE or belowB and the one that leaves that point are the same beyard
B, we move the last scan pointToor B and cut off the end of the route.

Or, if there is an angle greater than 0 between the in- andmggath, we construct a shorter route by
moving the last scan point 6 or B (to the point with the shortest distance) and connect the pwnt
with the next scan points.

- Let Sbe a shortest visibility path fror; (the bottom boundary of the kernel Bf, the portion of the
polygon that lies abové,) to Ky,. Every point in the polygon is visible from some point aldaid?; and
P, are visible from the endpoints & which lie onK; or Kg; a point elsewhere in the polygon must be
visible because it is visible from the corresponding patla obbot with continuous vision (because of
the monotonicity) and the definition of a visibility path.

Then an optimum watchman route of a robot with discrete wissoformed by following this shortest
visibility path and walking backwards (without a scan if pitde, i.e., if no shift in direction is needed).

|

Proof of Lemma 3: If the claim was not true, i.e., there was an optimum watchnoaite of a robot with
discrete vision visiting a point i?\ P’, this route would cross at least one essential edge. Anyt poihe
section of that edge that is enclosed by the route can seetlierpof the polygon that is i?\ P’ so we can
make the route shorter, as we needed at least one séanRhfor the former route as well. Thus, we have a
contradiction to the proposition that we have an optimuntivatan route. O

Proof of Lemma 4: If an optimum watchman route of a robot with discrete visiaes not visit the
essential edges in this order, the route will intersecifitse

Then we can restructure this route by deleting this inté¢ize@nd get a shorter route in which the pre-
specified order is followed. If an intersection appears, wistrhave at least four scan points on the crossing
lines, denoted these points Iy, p2, ps and p4, as shown in the left of Figure 7%s,..., ps are located on the
paths to or from the essential edges, or on these essergies edithout loss of generality, the essential edges
related tops, ..., p4 lie in clockwise order on the boundary Bf.

The following cases can occur:

1. Thereis no scan point between fh@n the paths. Then Figure 7 shows a route that is shorterdngiie
inequality: visitp, directly afterp;, andp, after ps.

2. If a scan pointis located on the intersection point, walrteeonsider two cases:



P1 D2 p1. o P2

2 D3 D1 g P

Figure 7: If there is no scan point between fhethe route may be shortened like this.

(a) Either a scan point on one of the lines established ini§lsufficient to see all points, then the
route in (1.) plus this scan point provides lower cost thandhginal route.

(b) Or a scan point on one of the lines established in (1.) isafficient; in that case we connect two
consecutive points by a direct path and use a path via thesetton scan point for the two other
points (or if possible a path via a point in shorter distamcevo of thep;).

3. If one of thep; is the intersection point, we have to consider the route rolosely. For that purpose we
mention two properties of essential extensions in reedirpolygons, which were stated by Deng et al.

[6].
Proposition 8 (Proposition 2.2 of Deng et al. [6])

(i) Two distinct essential extensions are either disjoinperpendicular to each other. (Note that the
same essential extension may be the extension of two diffédes.)

(i) Each essential extension intersects at most two otbsetial extensions. (If it intersects two other
essential extensions, then these two are parallel to edur.pt

The general situation is as shown in Figure 8.

path to S,

h path to S;

Y/

path to S Pk path to Sy

Figure 8: The general situation with one of thebeing the intersection point. We have

h#jh#kh#lj#k j#1andk#].

The paths leading to (or coming from) the essential extessioay have length 0, i.e., the corresponding
pi is located on an essential extension.

(a) All paths have length 0:
Thus, allp; are located on essential extensions. The essential extemisiwhichp; lies must run
alongpnpx, because (i) if it cut®npk, pn or px would lie in P\ P’, and (ii) the essential extension
may not be shorter thap,px, as running alon@npj, Pj P« (independent of direction) would not
be possible otherwise. As a resytipx is completely located on the essential extension. This
essential extension is intersected by at most two othentakextensions (see Proposition 8(ii)),
which may not intersect betwegn and px (because; in P\ P'.)

In the following we distinguish i1 , ps, or one of the pointg, and ps is the intersection point.



If p1 is the intersection poinfy, may not lie beforey, in clockwise order and the starting point
cannot be located betwe@g and pz1, which lie on the same extension, leading to a contradiction
The same argument holds fpg lying on pzps.

Otherwise, i.e., ifp2 or pz is the intersection point, these are the only points whegalthection

is changed, i.e., no “real” intersection appears, and thésdot touch the considered order, see
Figure 9.

P1
D1

D2
D2
b3

ps3
yZ

Figure 9: Left: p, as "intersection” point, in case of path length = 0. Righ:
as "intersection” point, in case of path length = 0.

(b) Atleast one path has positive length:

— If pj = p2, pj = p3 Or pj = pa, the route may turn once or twice.
When the robot turns only onc@; must be located on an essential extension, as a path to
Sj would cause another turn. Thus, and px must be located on the same extension (see
above), and only a path 1§ with positive length is possible. This; does not influence the
requested order, i.e., it is not a “real” intersection point
If the robot turns twice apj, a loop occurs; then the robot may traverse this loop in a way
that observes the given order.

— If pj = p1, the route may only use this point twice.
If the route does not turn twice gy, it must start there, as otherwi®gpz is an essential
extension, and spz may not lie on a shortest tour, as it would be locateR P’
If the route turns twice, the above loop argument holds. O

Proof of Lemma 5: If the optimum needk scans (in the interval of widtB), we havek stairs or niches (see
Figure 10 for the distinction) in (i), because such stairgiohes will only be visible from the running line if a
scan is taken perpendicular under the northernmost hagkbaundary of the stairs or niche, as the boundary
runs rectilinear, see Figure 11, right side. Each of thesthammost horizontal boundaries lies inside of a
NVR. These are identified by the robot, and each NVR has a véd#hor equal to the maximum width. Thus,
we need at most a binary search owdior each of them.

o

Figure 10: Left: Stairs. Right: Niche.

If the non-visible regions appear on two sides ((ii)), asdase may be, we needt Binary searches. Since
for each two NVRs a situation like in Figure 12 may occur, ith our strategy the robot distinguishes the
NVRs, reaches one of the dark gray positions, where one afidhevisible regions becomes visible, but not
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Figure 11: An interval of width B. Scans are required underrtbrthernmost horizontal boundary of
each stairs or niche, (bold).

Figure 12: Worst case for the scan points of the optimum t(lgghy) and our strategy (dark gray), if
the non-visible regions appear on two sides.

both. Thus, the robot will start another binary search. @quosntly, if the optimum takdsscans, the robot
will need at most twice as many binary searches.
O

Appendix B: Details of Strategy SCANSEARCH

Before giving a detailed description of our strategy SCANSEH, we give a rough overview. First of all
we distinguish between the possibility of reaching the retensionE axis-parallel without a turn and the
impossibility of doing so without a change of direction.

If the distance to the extensi@is big, i.e., it exceeds a value 0&2- 1 in the former case or a value of
a+ 1in the latter case, we explore the area up tiniefval casg; otherwise we face thextension case

In several cases of our strategy we run beyond the actuatggteand we will then use a certain basic
structure: It is eithe(ii) possible to cover the total planned length, or the boundeep& us from doing s@).

If the former is true, we distinguish between a negafliyand positive(ll) line creation. Moreover, in case of
the impossibility of reaching in an axis-parallel fashion without a turn, it is necessargdnsider whether the
boundary igb) or is not(a) closed south of the path whenever the boundary keeps us foering the total
distance (i.e., whenever we face céi3p

(i) results in running as far as possible, moving badk tapplying binary search for NVRs (up Ebon one
side, beyondE on both sides) and using a corridor whenever we find one (with adjustments). If we were
able to cover the total planned length and draw the imagiliaeywe apply binary search and we use corridors
in southern NVRs if this results in a negative line creati@therwise we move back 6 and start searching
for an NVR.

In this case we also distinguigh) and (b). For (a) the polygon exploration will continue south of the
second wing of the actual axis-parallel move, i.e., its pfidr executing the turn. We move as far as possible,
apply binary search on both wings (as always on paths we edaerd where NVRs appeared) and make turn
adjustments. In the event of a closed boundary to the goytihmay be necessary to apply turn adjustments
twice.

We still need to clarify when we use this basic structure.



« In the interval case with the possibility of reachiBgaxis-parallel without a turn, we consider the dis-
tanced; to the perpendicular of the next clockwise corner. If thiseeds a value ofé+ 1, we move to
this perpendicular, otherwise we cover a distancetbft2l (or 2a+ 1 if d; is smaller thara) and obtain
the basic case distinction mentioned above. There may pseaa no corner on the counterclockwise
side, which will make us move ta directly.

* In the extension case with the possibility of reachib@xis-parallel without a turn, the above basic
structure can be applied immediately.

* In the interval case without the possibility of reachiBgvithout a change of direction we also have to
differentiate between NVRs appearing up to the sight-blagkorner(3) and the absence of such NVRs
().

Without these NVR<ga), the distance to the sight-blocking cornby)(is our point of reference. Again
we move to the point that determines the distance if the miigtas big and walk beyond it otherwise.
Thus, if b is bigger than 2+ 1, we walk to the sight-blocking corner; as always when a&sllel
moves without a turn are not possible, we cover this distémes axis-parallel fashion; this results in
a triangle, formed by the two wings of the move together wlté $traight connection. b < 2a+ 1
holds, we may be able to cover a distance lgf21 and run beyoné on the second wing4), which
yields the basic case distinction from above. In additiba,goint where we have to change our direction
(pcor) Mmay not lie inside the polygor). If so, we run as far as possible up to the boundary (paint
and after a turn straight 6. Again, we run beyoné (resulting in the basic case distinction) or not (and
apply binary search and make turn adjustments if necesséingither (2) nor (B) is true, we make turn
adjustments.

With NVRs appearing up to the sight-blocking corii@y we consider other points of reference, but the
structure is the same as(ia). The critical distancen is the shortest distance to the intersection point of
the straight connection to the sight-blocking corner ardetktension of one side of an NVR. Moreover,
the point that is equivalent tpcor is calledpy,.

« In the extension case without the possibility of reacHihgxis-parallel without a change of direction,
we refer to the point in which the axis-parallel moveBahanges the direction g&. pe is the point
where the boundary in clockwise order has the corneadadhe distance from the actual starting point
to pe, see Figure 13.

G,bE

Figure 13: An example fope, pg andabg.

The critical distance iabe. If abg is big (@be > 2a+ 3), we cover a distance o&2- 1 along the straight
connection in moving axis-parallel. (The distancetoallows us to do so on the first wing.) This results
again in the basic case distinction. fedie < 2a+ 3 we move tcE via pg and (if necessary) apply binary
search and make turn adjustments.

This description applies ta < 1, fora > 1 we use a similar strategy. Because of taking scans wheever
distance ofiis covered, NVRs are explored while passing and corridersdemtified immediately.



While exploring the polygon, we make sure that in clockwisdeo all parts of the polygon are visible after
having been passed, i.e., we make sure that we see evergthatchman with continuous vision would see
when walking along the basic path. Areas that are not viglbfene an extension in the remaining part of the
algorithm, and we always use the next clockwise corridorrédwer, we return to the starting point as soon as
we have seen all sides of the boundary.

Strategy 1(Online strategy SCANSEARCH for a robot with discrete vigio

INPUT: A starting position inside an unknown rectilinearlygon P, its minimum side length a, its minimum
corridor width &.

OUTPUT: A route along which the whole polygon becomes wadiin a robot with discrete vision.

We identify the next extension in analogy to the GREEDY-QHEIldlgorithm of Deng et al. [6], i.e., we
update Cf and M whenever changes occur.

If f is areflex corner, let E= Ext(F(f)). Otherwise let b be the blocking corner whenwas in view, and
let E=Ext(B(b)).

e a<l

A. An axis-parallel move to E is possible without a turn:

* e>2a+ 1. interval case
1. Ifd > 2a+ 1, move to the perpendicular of the corner.
2. Ifd<2a+1:
if dj > a: cover a distance did; + 1;
if dj < a: cover a distance dfa+ 1;
apply binary search if necessary, i.e., if non-visible e appear.
3. If no corner appears on the counterclockwise side, moreeiy to E.
If we run beyond E with a step of leng?t; + 1/2a+ 1:
(i) If we do not cover the total distance, because of the bamnd
Run as far as possible, go back to E, move back in steps ohléngpply binary search
for NVRs (on the counterclockwise side till E, on both sideghd E); if a corridor is
identified, use it and make turn adjustments. (If a criticakesion is found, search only
on the opposite side.)
(i) 1fwe may cover the total distance a; + 1/2a+ 1:
(I) negative line creation:
Apply binary search; if a corridor is discovered inside anRiMise it and make turn ad-
justments. (Because the line creation is negative, onlgidans in southern non-visible
regions are used.)
(1) positive line creation:
Go back to E, move back in steps of length 1, apply binary seamd search for a cor-
ridor and the critical extension, making turn adjustments.

* e< 2a+ 1: extension case
Consider running a distance @é+ 1.
(i) Ifitis not possible to run a distance @+ 1:
Run as far as possible, go back to E, move back in steps ohldngpply binary search
for NVRs and, if a corridor is identified, use it and make tudjustments.

(ii) If we may cover the total distance 2é+ 1:
(I) negative line creation.
(1) positive line creation.

B. An axis-parallel move to E is not possible without a chamigdirection:



* e>a+ 1: interval case
(a): No non-visible region up to the sight-blocking corner
1. If by > 2a+ 1, move axis-parallel to the corner, see Figure 14.

Figure 14: Ifb; > 2a+ 1, the robot moves axis-parallel to the
corner.

2. If by < 2a+1, cover a distance dlb; + 1 along the straight connection in moving axis-
parallel and visiting por, see Figure 15. If necessary, apply binary search. Apply the
binary search on the first axis-parallel line, the first wirtngfore leaving g in a right
angle to this wing and apply the binary search on the secomd afterwards.

2b; +1

. .p(l()r‘

Figure 15: Ifb; < 2a+ 1, the robot moves axis-parallel to a point
in distance & + 1, and in doing S0 it VisitPcor.

Now distinguish the following.

(4) If we run beyond E (on the second wing, the second axis-jehliale):
(i) Ifitis not possible to cover the total planned length,de be the
distance to this boundary along the straight connectior an

(a) if the boundary is not closed south of the path, i.e., thekavise
exploration of the polygon continues south of the second,win
then move as far as possible, apply binary search on bothawving
and make turn adjustments.

(b) if the boundary is closed south of the path, then moveraasfa
possible, apply binary search on both wings and apply turn
adjustments, if necessary twice, as we are in the last cate of
turn adjustments.

(ii) If it is possible to cover the total planned length, wstiiguish:
() negative line creation.
() positive line creation.
(B) Ifitis not possible to run via @ (as the boundary blocks us from doing so) and
e if we do not run beyond E in doing so:
Runto g (see Figure 16) and then axis-parallel to the straight
connection. If necessary, apply binary search and makeadjustments.
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Figure 16:pg is the point in which the clockwise boundary bend&to

e if we would run beyond E:
(i) If it is not possible to cover the total planned length:

(a) If the boundary is not closed south of the path.
(b) If the boundary is closed south of the path.

(ii) If it is possible to cover the total planned length, wstiiguish:
() negative line creation.
() positive line creation.
(€C) neither (7) nor (B) is true, make turn adjustments (like in the first case of thva t
adjustments).
(B): Along the boundary up to the sight-blocking corner occansvisible regions

1. If m > 2a+ 1, cover a distance of jralong the straight connection in moving axis-
parallel and visiting .

2. If m < 2a-+1, cover a distance o2m + 1 along the straight connection in moving
axis-parallel and apply binary search if necessary.
In (2.) several cases may occur:

(4) If we run beyond E (on the second wing, the second axis-jghliale):
(i) If it is not possible to cover the total planned length:

(a) If the boundary is not closed south of the path.
(b) If the boundary is closed south of the path.

(ii) If it is possible to cover the total planned length, wstiiguish:

() negative line creation.
() positive line creation.

(B) Ifitis not possible to run via g (as the boundary hinders us to do so) and

e if we will not run beyond E in doing so:
Run to g and then axis-parallel to the straight connection. If nezey
apply binary search and make turn adjustments.

e if we run beyond E:
(i) If it is not possible to cover the total planned length:

(a) If the boundary is not closed south of the path.
(b) If the boundary is closed south of the path.

(ii) If it is possible to cover the total planned length, westiiguish:
() negative line creation.
(I positive line creation.
(C) If neither () nor (B) is true, make turn adjustments.
* e< a+ 1: extension case

e Ifabg <2a+3, move to E via p. If necessary apply binary search and turn adjustments
of the first kind.



e Ifabg > 2a+ 3, cover a distance dte+ 1 along the straight connection in moving axis-
parallel. This is possible as ab> 2a+ 3.
Several cases may occur when we want to cover a distar@edofl along the straight
connection in moving axis-parallel:
(i) Ifitis not possible to cover the total planned lengttt,dg be the
distance to this boundary along the straight connectior an

(a) if the boundary is not closed south of the path
(b) if the boundary is closed south of the path.

(ii) If it is possible to cover the total planned length, wstiiguish:

() negative line creation.
() positive line creation.

ca>1
Identify the next extension and consider the possibilityetzh it in an axis-parallel fashion without a
change of direction, as well as the distinction betweentiterval and the extension case.

A. An axis-parallel move to E is possible without a turn:

* interval case
Move to E and take a scan each time a distance of a is coveredddition, scan on E if
scanning with distance of a does not result in a scan on E.

* extension case
If possible, cover a distance @&+ 1; in doing so, take a scan each time a distance of a is
covered. If a corridor is discovered to the south of the rungrline, use it.
If it is not possible to cover a distance &+ 1, run as far as possible (taking a scan each
time a distance of a is covered), use a southern corridorifarp southern corridor exists,
move back to the clockwise first northern corridor.

B. An axis-parallel move to E is not possible without a chamigdirection:

* interval case
Cover a distance of e along the straight connection in mowarig-parallel, taking a scan
whenever a distance of a is covered as well as at the turn aritl.on

* extension case
Cover a distance o2e+ 1 along the straight connection in moving axis-parallel,itaka
scan whenever a distance of a is covered, as well as whenrdatidn is changed and when
the distance is covered.
If it is not possible to cover the total planned length, mosdar as possible and take the
scans in analogy to the move described above.
Use a southern corridor as well as a western or northern orfeemthe total possible distance
is covered.

Move to the easternmost northern NVR with a corridor if norictar appears in the other non-visible
regions, if E is passed and if there is no negative line caatilf everything is visible between the beginning
and the end of the current case, stop applying binary sedtuh steps of length 1 etc., and continue with
identifying the next extension.

Appendix C: Computing the Competitive Ratio

For an illustration, Table 1 shows the competitive values strategy SCANSEARCH achieves = a.

For computing these estimates, we compare the numerous chseategy SCANSEARCH with the op-
timum, resulting in the values listed in Tables 2 and 3. SaEwvafrthese bounds are dominated, e.g., the value
for k=0 is less than the value fér> 0 in the same case. These dominating values are printeddoudd for
dominated values witk > 0, the dominating term is labeled in parentheses.
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Table 3: The upper bounds for the competitive ratio in théedkint cases.



