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Abstract. In the Multislope Ski Rental problem, the user needs a certain resource for
some unknown period of time. To use the resource, the user must subscribe to one of
several options, each of which consists of a one-time setup cost (“buying price”), and cost
proportional to the duration of the usage (“rental rate”). The larger the price, the smaller
the rent. The actual usage time is determined by an adversary, and the goal of an algo-
rithm is to minimize the cost by choosing the best option at any point in time. Multislope
Ski Rental is a natural generalization of the classical Ski Rental problem (where the only
options are pure rent and pure buy), which is one of the fundamental problems of online
computation. The Multislope Ski Rental problem is an abstraction of many problems
where online decisions cannot be modeled by just two options, e.g., power management
in systems which can be shut down in parts. In this paper we study randomized algo-
rithms for Multislope Ski Rental. Our results include the best possible online randomized
strategy for any additive instance, where the cost of switching from one option to another
is the difference in their buying prices; and an algorithm that produces an e-competitive
randomized strategy for any (non-additive) instance.

1. Introduction

Arguably, the “rent or buy” dilemma is the fundamental problem in online algorithms:
intuitively, there is an ongoing game which may end at any moment, and the question is
to commit or not to commit. Choosing to commit (the ‘buy’ option) implies paying large
cost immediately, but low overall cost if the game lasts for a long time. Choosing not to
commit (the ‘rent’ option) means high spending rate, but lower overall cost if the game ends
quickly. This problem was first abstracted in the “Ski Rental” formulation [10] as follows.
In the buy option, a one-time cost is incurred, and thereafter usage is free of charge. In
the rent option, the cost is proportional to usage time, and there is no one-time cost. The
deterministic solution is straightforward (with competitive factor 2). In the randomized
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model, the algorithm chooses a random time to switch from the rent to the buy option
(the adversary is assumed to know the algorithm but not the actual outcomes of random
experiments). As is well known, the best possible online strategy for classical ski rental has
competitive ratio of e

e−1 ≈ 1.582.
In many realistic cases, there may be some intermediate options between the extreme

alternatives of pure buy and pure rent: in general, it may be possible to pay only a part
of the buying cost and then pay only partial rent. The general problem, called here the
Multislope Ski Rental problem, can be described as follows. There are several states (or
slopes), where each state i is characterized by two numbers: a buying cost bi and a rental
rate ri (see Fig. 1). Without loss of generality, we may assume that for all i, bi < bi+1

and ri > ri+1, namely that after ordering the states in increasing buying costs, the rental
rates are decreasing. The basic semantics of the multislope problem is natural: to hold the
resource under state i for t time units, the user is charged bi + rit cost units. An adversary
gets to choose how long the game will last, and the task is to minimize total cost until the
game is over.

The Multislope Ski Rental problem introduces entirely new difficulties when compared
to the classical Ski Rental problem. Intuitively, whereas the only question in the classical
version is when to buy, in the multislope version we need also to answer the question of
what to buy. Another way to see the difficulty is that the number of potential transitions
from one slope to another in a strategy is one less than the number of slopes, and finding
a single point of transition is qualitatively easier than finding more than one such point.

In addition, the possibility of multiple transitions forces us to define the relation between
multiple “buys.” Following [2], we distinguish between two natural cases. In the additive
case, buying costs are cumulative, namely to move from state i to state j we only need to
pay the difference in buying prices bj − bi. In the non-additive case, there is an arbitrarily
defined transition cost bij for each pair of states i and j.

Our results. In this paper we analyze randomized strategies for Multislope Ski Rental.
(We use the term strategy to refer to the procedure that makes online decisions, and the
term algorithm to refer to the procedure that computes strategies.) Our main focus is the
additive case, and our main result is an efficient algorithm that computes the best possible
randomized online strategy for any given instance of additive Multislope Ski Rental problem.
We first give a simpler algorithm which decomposes a (k+1)-slope instance into k two-slope
instances, whose competitive factor is e

e−1 . For the non-additive model, we give a simple
e-competitive randomized strategy.

Related Work. Variants of ski rental are implicit in many online problems. The classical
(two-slope) ski rental problem, where the buying cost of the first slope and the rental rate of
the second slope are 0, was introduced in [10], with optimal strategies achieving competitive
factors of 2 (deterministic) and e

e−1 (randomized). Karlin et al. [9] apply the randomized
strategy to TCP acknowledgment mechanism and other problems. The classical ski rental
is sometimes called the leasing problem [5].

Azar et al. [3] consider a problem that can be viewed as non-additive multislope ski
rental where slopes become available over time, and obtain an online strategy whose compet-
itive ratio is 4 + 2

√
2 ≈ 6.83. Bejerano et al. [4], motivated by rerouting in ATM networks,

study the non-additive multislope problem. They give a deterministic 4-competitive strat-
egy, and show that the factor of 4 holds assuming only that the slopes are concave, i.e.,
when the rent in a slope may decrease with time. Damaschke [6] considers a static version
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Figure 1: A multislope ski rental instance with 5 slopes: The thick line indicates the optimal
cost as a function of the game duration time.

of the problem from [3], namely non-additive multislope ski rental problem where each slope
is bought “from scratch.”1 For deterministic strategies, [6] gives an upper bound of 4 and

a lower bound of 5+
√

5
2 ≈ 3.618; [6] also presents a randomized strategy whose competitive

factor is 2/ ln 2 = 2.88. As far as we know, Damaschke’s strategy is the only randomized
strategy for multislope ski rental to appear in the literature.

Irani et al. [8] present a deterministic 2-competitive strategy for the additive model that
generalizes the strategy for the two slopes case. They motivate their work by energy saving:
each slope corresponds to some partial “sleep” mode of the system. Augustine et al. [2]
present a dynamic program that computes the best deterministic strategy for non-additive
multislope instances. The case where the length of the game is a stochastic variable with
known distribution is also considered in both [8, 2].

Meyerson [12] defines the seemingly related “parking permit” problem, where there are
k types of permits of different costs, such that each permit allows usage for some duration
of time. Meyerson’s results indicate that the problems are not very closely related, at
least from the competitive analysis point of view: It is shown in [12] that the competitive
ratio of the parking permit problem is Θ(k) and Θ(log k) for deterministic and randomized
strategies, respectively.

Organization. The remainder of this paper is organized as follows. In Section 2 we define
the basic additive model and make a few preliminary observations. In Section 3 we give
a simple algorithm to solve the multislope problem, and in Section 4 we present our main
result: an optimal online algorithm. An e-competitive algorithm for the non-additive case
is presented in Section 5.

2. Problem Statement and Preliminary Observations

In this section we formalize the additive version of the multislope ski rental problem. A
k-ski rental instance is defined by a set of k +1 states, and for each state i there is a buying
cost bi and a renting cost ri. A state can be represented by a line: the ith state corresponds
to the line y = bi + rix. Fig. 1 gives a geometrical interpretation of a multislope ski rental
instance with five states. We use the terms “state” and “slope” interchangeably.

The requirement of the problem is to specify, for all times t, which slope is chosen at
time t. We assume that state transitions can be only forward, and that states cannot be

1It can be shown that strategies that work for this case also work for the general non-additive case (see
Section 5).
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skipped, i.e., the only transitions allowed are of the type i → i + 1. We stress that this
assumption holds without loss of generality in the additive model, where a transition from
state i → j for j > i + 1 is equivalent to a sequence of transitions i → i + 1 → . . . → j
(cf. Section 5). It follows that a deterministic strategy for the additive multislope ski rental
problem is a monotone non-decreasing sequence (t1, . . . , tk) where ti ∈ [0,∞) corresponds
to the transition i− 1→ i.

A randomized strategy can be described using a probability distribution over the family
of deterministic strategies. However, in this paper we use another way to describe ran-
domized strategies. We specify, for all times t, a probability distribution over the set of
k + 1 slopes. The intuition is that this distribution determines the actual cost paid by any
online strategy. Formally, a randomized profile (or simply a profile) is specified by a vector
p(t) = (p0(t), . . . , pk(t)) of k + 1 functions, where pi(t) is the probability to be in state i at

time t. The correctness requirement of a profile is
∑k

i=0 pi(t) = 1 for all t ≥ 0. Clearly, any
strategy is related to some profile. In the sequel we consider a specific type of profiles for
which a randomized strategy can be easily obtained.

The performance of a profile is defined by its total accrued cost, which consists of two
parts as follows. Given a randomized profile p, the expected rental cost of p at time t is

Rp(t)
def
=
∑

i pi(t) · ri ,

and the expected total rental cost up to time t is
∫ t

z=0
Rp(z)dz .

The second part of the cost is the buying cost. In this case it is easier to define the
cumulative buying cost. Specifically, the expected total buying cost up to time t is

Bp(t)
def
=
∑

i pi(t) · bi .

The expected total cost for p up to time t is

Xp(t)
def
= Bp(t) +

∫ t

z=0
Rp(z)dz .

The goal of the algorithm is to minimize total cost up to time t for any given t ≥ 0, with
respect to the best possible. Intuitively, we think of a game that may end at any time. For
any possible ending time, we compare the total cost of the algorithm with the best possible
(offline) cost. To this end, consider the optimal solution of a given instance. If the games
ends at time t, the optimal solution is to select the slope with the least cost at time t (the
thick line in Fig. 1 denotes the optimal cost for any given t). More formally, the optimal
offline cost at time t is

opt(t) = min
i

(bi + ri · t) .

For i > 0, denote by si the time t instance where bi−1 + ri−1 · t = bi + ri · t, and define
s0 = 0. It follows that the optimal slope for a game ending at time t is the slope i for which
t ∈ [si, si+1] (if t = si for some i then both slopes i− 1 and i are optimal).

Finally, let us rule out a few trivial cases. First, note that if there are two slopes such
that bi ≤ bj and ri ≤ rj then the cost incurred by slope j is never less than the cost incurred
slope i, and we may therefore just ignore slope j from the instance. Consequently, we will
assume henceforth, without loss of generality, that the states are ordered such that ri−1 > ri

and bi−1 < bi for 1 ≤ i ≤ k.
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Second, using similar reasoning, note that we may consider only strategies that are
monotone over time with respect to majorization [11], i.e., strategies such that for any two
times t ≤ t′ we have

j
∑

i=0

pi(t) ≥
j
∑

i=0

pi(t
′) . (2.1)

Intuitively, Eq. (2.1) means that there is no point is “rolling back” purchases: if at a given
time we have a certain composition of the slopes, then at any later time the composition
of slopes may only improve. Note that Eq. (2.1) implies that Bp is monotone increasing
and Rp is monotone decreasing, i.e., over time, the strategy invests non-negative amounts
in buying, resulting in decreased rental rates.

3. An e
e−1

-Competitive Algorithm

In this section we describe how to solve the multislope problem by reducing it to the
classical two-slope version, resulting in a randomized strategy whose competitive factor is

e
e−1 . This result serves as a warm-up and it also gives us a concrete upper bound on the
competitiveness of the algorithm presented in Section 4.

The case of rk = 0. Suppose we are given an instance (b, r) with k + 1 slopes, where
rk = 0. We define the following k instances of the classical two-slopes ski rental problem:
in instance i for i ∈ {1, . . . , k}, we set

instance i: bi
0 = 0 and ri

0 = ri−1 − ri ; bi
1 = bi − bi−1 and ri

1 = 0 . (3.1)

Observe that bi
1 = ri

0 · si, i.e., the two slopes of the ith instance intersect exactly at
si, their intersection point at the original multislope instance. Now, let opt(t) denote
the optimal offline solution to the original multislope instance, and let opti(t) denote the
optimal solution of the ith instance at time t, i.e., opti(t) = min{bi

1, r
i
0 · t}. We have the

following.

Lemma 3.1. opt(t) =
∑k

i=1 opti(t).

Proof. Consider a time t and let i(t) be the optimal multislope state at time t. Then,

k
∑

i=1

opt
i(t) =

∑

i:si≤t

bi
1 +

∑

i:si>t

ri
0 · t

=
∑

i:si≤t

(bi − bi−1) +
∑

i:si>t

(ri−1 − ri) · t = bi(t) + ri(t) · t = opt(t) .

Given the decomposition (3.1), it is easy to obtain a strategy for any multislope instance
by combining strategies for k classical instances. Specifically, what we do is as follows. Let
pi be the e

e−1 -competitive profile for the ith (two slope) instance (see [10]). We define a

profile p̂ for the multislope instance as follows: p̂i(t) = pi
1(t)− pi+1

1 (t) for i ∈ {1, . . . , k− 1},
p̂0(t) = p1

0(t), and p̂k(t) = pk
1(t). We first prove that the profile is well defined.

Lemma 3.2. (1) pi
1(t) ≤ pi−1

1 (t) for every i ∈ {1, . . . , k} and time t. (2)
∑k

i=0 p̂i(t) = 1 .
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Proof. By the algorithm for classical ski rental, we have that the strategy for the i instance

is pi
1(t) = (et·ri

0/bi
1 − 1)/(e − 1). Claim (1) of the lemma now follows from that fact that

bi
1/r

i
0 = si > si−1 = bi−1

1 /ri−1
0 for every i ∈ {1, . . . , k}. Claim (2) follows from the telescopic

sum
k
∑

i=0

p̂i(t) = p1
0(t) +

k−1
∑

i=1

(pi
1(t)− pi+1

1 (t)) + pk
1(t) = p1

0(t) + p1
1(t) = 1 .

Next, we show how to convert the profile p̂ into a strategy. Note that the strategy
uses a single random experiment, since arbitrary dependence between the different pis are
allowed.

Lemma 3.3. Given p̂ one can obtain an online strategy whose profile is p̂.

Proof. Define P̂i(t)
def
=
∑

j≥i p̂j(t) and let U be a random variable that is chosen uniformly

from [0, 1]. The strategy is as follows: we move from state i to state i + 1 when U = P̂i(t)

for every state i. Namely, the ith transition time ti is the time t such that U = P̂i(t).

Thus we obtain the following:

Theorem 3.4. The expected cost of the strategy defined by p̂ is at most e
e−1 times the

optimal offline cost.

Proof. We first show that by linearity, the expected cost to the combined strategy is the

sum of the costs to the two-slope strategies, i.e., that Xp̂(t) =
∑k

i=1 Xpi(t). For example,
the buying cost is

Bp̂(t) =

k
∑

i=0

p̂i(t) ·bi =

k−1
∑

i=0

(pi
1(t)−pi+1

1 (t)) ·bi +pk
1(t) ·bk =

k
∑

i=1

pi
1(t) ·(bi−bi−1) =

k
∑

i=1

Bpi(t) .

Similarly, Rp̂(t) =
∑k

i=1 Rpi(t) by linearity, and therefore,

Xp̂(t) = Bp̂(t) +

∫ t

z=0
Rp̂(z)dz =

k
∑

i=1

Bpi(t) +

∫ t

z=0

(

k
∑

i=1

Rpi(z)

)

dz =
k
∑

i=1

Xpi(t) .

Finally, by Lemma 3.1 and the fact that the strategies p1, . . . , pk are e
e−1 -competitive we

conclude that

Xp̂(t) =
k
∑

i=1

Xpi(t) ≤
k
∑

i=1

e

e− 1
· opt

i(t) =
e

e− 1
· opt(t)

which means that p̂ is e
e−1 -competitive.

The case of rk > 0. We note that if the smallest rental rate rk is positive, then the
competitive ratio is strictly less that e

e−1 : this can be seen by considering a new instance

where rk is subtracted from all rental rates, i.e., b′i = bi and r′i = ri − rk for all 0 ≤ i ≤
k. Suppose p is e

e−1 -competitive with respect to (r′, k′) (note that r′k = 0). Then the
competitive ratio of p at time t w.r.t. the original instance is:

c(t) =
Xp(t)

opt(t)
=

X ′
p(t) + rk · t

opt′(t) + rk · t
≤

e
e−1 · opt′(t) + rk · t

opt′(t) + rk · t
=

e

e− 1
− 1

e− 1
· 1

opt′(t)
rk·t + 1
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d
dtopt′(t) = ri − rk for t ∈ [si−1, si). Hence, the ratio opt′(t)

rk·t is monotone decreasing, and

thus c(t) is monotone decreasing as well. It follows that

c ≤ e

e− 1
− 1

e− 1
· 1

r0−rk

rk
+ 1

=
e− rk/r0

e− 1

Observe that c = e
e−1 when rk = 0, and that c = 1 when rk = r0 (i.e., when k = 0).

4. An Optimal Online Algorithm

In this section we develop an optimal online strategy for any given additive multislope
ski rental instance. We reduce the set of all possible strategies to a subset of much simpler
strategies, which on one hand contains an optimal strategy, and on the other hand is easier
to analyze, and in particular, allows us to effectively find such an optimal strategy.

Consider an arbitrary profile. (Recall that we assume w.l.o.g. that no slope is completely
dominated by another.) As a first simplification, we confine ourselves to profiles where each
pi has only finitely many discontinuities. This allows us to avoid measure-theoretic patholo-
gies without ruling out any reasonable solution within the Church-Turing computational
model. It can be shown that we may consider only continuous profiles (details omitted).

So let such a profile p = (p0, . . . , pk) be given. We show that it can be transformed
into a profile of a certain structure without increasing the competitive factor. Our chain
of transformations is as follows. First, we show that it suffices to consider only simple
profiles we call “prudent.” Prudent strategies buy slopes in order, one by one, without
skipping and without buying more than one slope at a time. We then define the concept of
“tight” profiles, which are prudent profiles that spend money at a fixed rate relative to the
optimal offline strategy. We prove that there exists a tight optimal profile. Furthermore,
the best tight profile can be effectively computed: Given a constant c, we show how to check
whether there exists a tight c-competitive strategy, and this way, using binary search on c,
we can find the best tight strategy. Finally, we explain how to construct that profile and a
corresponding strategy.

4.1. Prudent and Tight Profiles

Our main simplification step is to show that it is sufficient to consider only profiles that
buy slopes consecutively one by one. Formally, prudent profiles are defined as follows.

Definition 4.1 (active slopes, prudent profiles). A slope i is active at time t if pi(t) > 0.
A profile is called prudent if at all times there is either one or two consecutive active slopes.

At any given time t, at least one slope is active because
∑

i pi(t) = 1 by the problem
definition. Considering Eq. (2.1) as well, we see that a continuous prudent profile progresses
from one slope to next without skipping any slope in between: once slope i is fully “paid
for” (i.e., pi(t) = 1), the algorithm will start buying slope i + 1.

We now prove that the set of continuous prudent profiles contains an optimal profile.
Intuitively, the idea is that a non-prudent profile must have two non-consecutive slopes with
positive probability at some time. In this case we can “shift” some probability toward a
middle slope and only improve the overall cost.

Theorem 4.2. If there exists a continuous c-competitive profile p for some c ≥ 1, then
there exists a prudent c-competitive profile p̃.
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Proof. Let p = (p0, . . . , pk) be a profile and suppose that all the pis are continuous. It
follows that Bp is also continuous. Define best(t) = max {i : bi ≤ Bp(t)} and next(t) =
min {i : bi ≥ Bp(t)}. In words, best(t) is the most expensive slope that is fully within the
buying budget of p at time t, and next(t) is the most expensive slope that is at least partially
within the buying budget of p at time t. Obviously, best(t) ≤ next(t) ≤ best(t) + 1 for all
t. Now, we define p̃ as follows:

p̃i(t) =



























bnext −Bp(t)

bnext − bbest
i = best(t) and best(t) 6= next(t),

Bp(t)−bbest

bnext−bbest
i = next(t) and best(t) 6= next(t),

1 i = best(t) = next(t),

0 otherwise.

It is not hard to verify that
∑

i pi(t) = 1 for every time t. Furthermore, observe that p̃ is
prudent, because Bp is continuous. It remains to show that p̃ is c-competitive. We do so
by proving that Bp̃(t) = Bp(t) and Rp̃(t) ≤ Rp(t) for all t. First, directly from definitions
we have

Bp̃(t) = pbest(t)(t) · bbest(t) + pnext(t)(t) · bnext(t)

=
bnext(t) −Bp(t)

bnext(t) − bbest(t)
· bbest(t) +

Bp(t)− bbest(t)

bnext(t) − bbest(t)
· bnext(t) = Bp(t) .

Consider now rental payments. To prove that Rp̃(t) ≤ Rp(t) for every time t we

construct inductively a sequence of probability distributions p = p0, . . . , p` = p̃. The first
distribution p0 is defined to be p. Suppose now that pj is not prudent. Distribution pj+1 is
obtained from pj as follows. For any t such that there are two non-consecutive slopes with
positive probability, let i1(t), i2(t), i3(t) be any three slopes such that i1(t) = argmin{i :

pj
i (t) > 0}, i3(t) = argmax{i : pj

i (t) > 0}, and i1(t) < i2(t) < i3(t) (such i2(t) exists because
pj is not prudent). Define

pj+1
i (t) =



























pj
i (t)−

∆j(t)
bi2(t)−bi1(t)

i = i1(t),

pj
i (t) + ∆j(t)

bi2(t)−bi1(t)
+ ∆j(t)

bi3(t)−bi2(t)
i = i2(t),

pj
i (t)−

∆j(t)
bi3(t)−bi2(t)

i = i3(t),

pj
i (t) i 6∈ {i1(t), i2(t), i3(t)}

where ∆j(t) > 0 is maximized so that pj+1
i (t) ≥ 0 for all i. Intuitively, we shift a maximal

amount of probability mass from slopes i1(t) and i3(t) to the middle slope i2(t). The fact

that ∆j(t) is maximized means that we have either that pj+1
i1

(t) = 0, or pj+1
i3

(t) = 0, or
both. In any case, we may already conclude that ` < k. Also note that by construction, for

all t we have Bpj+1(t) =
∑

i p
j+1
i (t) · bi =

∑

i p
j
i (t) · bi = Bpj (t). Hence, p` = p̃.

As to the rental cost, fix a time t, and consider now the rent paid by pj and pj+1:

Rpj (t) − Rpj+1(t) =

= ri1(t)
∆j(t)

bi2(t) − bi1(t)
− ri2(t)

(

∆j(t)

bi2(t) − bi1(t)

∆j(t)

bi3(t) − bi2(t)

)

+ ri3(t)
∆j(t)

bi3(t) − bi2(t)

= ∆j(t) ·
(

ri1(t) − ri2(t)

bi2(t) − bi1(t)
−

ri2(t) − ri3(t)

bi3(t) − bi2(t)

)

> 0
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where the last inequality follows from the fact that if i < j, then
bj−bi

ri−rj
is the x coordinate

of the intersection point between the slopes i and j.

Our next step is to consider profiles that invest in buying as much as possible under
some spending rate cap. Our approach is motivated by the following intuitive observation.

Observation 4.3. Let p1 and p2 be two randomized prudent profiles. If Bp1(t) ≥ Bp2(t)
for every t, then Rp1(t) ≤ Rp2(t) for every t.

In other words, investing available funds in buying as soon as possible results in lower
rent, and therefore in more available funds. Hence, we define a class of profiles which spend
money as soon as possible in buying, as long as there is a better slope to buy, namely as
long as pk(t) < 1.

Definition 4.4. Let c ≥ 1. A prudent c-competitive profile p is called tight if Xp(t) =
c · opt(t) for all t with pk(t) < 1.

Clearly, if the last slope is flat, i.e., rk = 0, then it must be the case that pk(sk) = 1
for any profile with finite competitive factor: otherwise, the cost to the profile will grow
without bound while the optimal cost remains constant. However, it is important to note
that if rk > 0, there may exist an optimal profile p that never buys the last slope, but still
its expected spending rate as t tends to infinity is c · rk.

It is easy to see that a tight profile can achieve any achievable competitive factor.

Lemma 4.5. If there exists a c-competitive prudent profile p for some c ≥ 1, then there
exists a c-competitive tight profile p̃.

Proof. Let p̃ be the prudent profile satisfying Xp̃(t) = c · opt(t) for all t for which p̃k(t) <
1. We need to show that p̃ is feasible. Since by definition, p buys with any amount
left, it suffices to show that for all t, the rent paid by p is at most c · d

dtopt(t). Indeed,
Rp̃(t) ≤ Rp(t) for every t due to Observation 4.3, and since p is c-competitive it follows that

Rp(t) ≤ c · d
dtopt(t) and we are done.

4.2. Constructing Optimal Online Strategies

We now use the results above to construct an algorithm that produces the best possible
online strategy for the multislope problem. The idea is to guess a competitive factor c, and
then try to construct a c-competitive tight profile. Given a way to test for success, we can
apply binary search to find the optimal competitive ratio c to any desired precision.

The main questions are how to test whether a given c is feasible, and how to construct
the profiles. We answer these questions together: given c, we construct a tight c-competitive
profile until either we fail (because c was too small) or until we can guarantee success. In
the remainder of this section we describe how to construct a tight profile p for a given
competitive factor c.

We begin with analyzing the way a tight profile may spend money. Consider the
situation at some time t such that pk(t) < 1. Let j be the maximum index such that sj ≤ t.

Then d
dtopt(t) = rj. Therefore, the spending rate of a tight profile at time t must be c · rj .

If j < k, the tight profile may spend at rate c · rj until time sj+1 (or until pk(t) = 1), and if
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j = k the tight profile may continue spending at this rate forever. Hence, for t ∈ (sj , sj+1),
we have

d

dt
Bp(t) + Rp(t) = c · d

dt
opt(t) = c · rj . (4.1)

Since p is tight and therefore prudent, we also have, assuming best(t) = i and next(t) = i+1,
that

Bp(t) = pi(t)bi + pi+1(t)bi+1 ,

and
Rp(t) = pi(t)ri + pi+1(t)ri+1 .

Plugging the above equations into Eq. (4.1), we get

d

dt
pi(t)bi +

d

dt
pi+1(t)bi+1 + pi(t)ri + pi+1(t)ri+1 = c · rj

Since p is prudent, pi(t) = 1− pi+1(t) and hence d
dtpi(t) = − d

dtpi+1(t). It follows that

d

dt
pi+1(t) + pi+1(t) ·

ri+1 − ri

bi+1 − bi
=

c · rj − ri

bi+1 − bi
(4.2)

A solution to a differential equation of the form y ′(x) + αy(x) = β where α and β are

constants is y = β
α + Γ · e−αx, where Γ depends on the boundary condition. Hence in our

case we conclude that

pi+1(t) =
c · rj − ri

ri+1 − ri
+ Γ · e

ri−ri+1
bi+1−bi

·t
, (4.3)

and pi(t) = 1− pi+1(t), where the constant Γ is determined by the boundary condition.
Eq. (4.3) is our tool to construct p in a piecewise iterative fashion. For example, we

start constructing p from t = 0 using p1(t) = c·r0−r0
r1−r0

+Γ·e
r0−r1
b1−b0

·t
and the boundary condition

p1(0) = 0. We get that Γ = r0(c−1)
r0−r1

, i.e.,

p1(t) =
r0(c− 1)

r0 − r1
· (e

r0−r1
b1−b0

t − 1) ,

and this holds for all t ≤ min(s1, t1), where t1 is the solution to p1(t1) = 1.
In general, Eq. (4.2) remains true so long as there is no change in the spending rate

and in the slope the profile p is buying. The spending rate changes when t crosses sj, and
the profile starts buying slope i + 2 when pi+1(t) = 1.

We can now describe our algorithm. Given a ratio c, Algorithm Feasible is able to
construct the tight profile p or to determine that such a profile does not exist. It starts
with the boundary condition p1(0) = 0 and reveals the first part of the profile as shown
above. Then, each time the spending rate changes or there is a change in best(i) it moves
to the next differential equation with a new boundary condition. After at most 2k such
iterations it either computes a c-competitive tight profile p or discovers that such a profile
is infeasible. Since we are able to test for success using Algorithm Feasible, we can apply
binary search to find the optimal competitive ratio to any desired precision.

We note that it is easy to construct a strategy that corresponds to any given prudent
profile p, as described in the proof of Lemma 3.3. We conclude with the following theorem.

Theorem 4.6. There exists an O(k log 1
ε ) time algorithm that given an instance of the addi-

tive multislope ski rental problem for which the optimal randomized strategy has competitive
ratio c, computes a (c + ε)-competitive strategy.
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Algorithm 1 – Feasible(c,M): true if the k-ski instance M = (b, r) admits competitive
factor c

1: Let si = bi−bi−1

ri−1−ri
for each 1 ≤ i ≤ k

2: Boundary Condition ← “p1(0) = 0”
3: j ← 0; i← 1
4: loop

5: Define pi(t) =
c·rj−ri−1

ri−ri−1

+ Γ · exp( ri−1−ri

bi−bi−1

· t)
6: Try to solve for Γ using Boundary Condition
7: if no solution then return false . possible escape if not feasible
8: y ← pi(sj)
9: if y < 1 then

10: Boundary Condition ← “pi(sj) = y”
11: j ← j + 1 . continue at the next interval [sj , sj1 ]
12: else

13: Let x be such that pi(x) = 1
14: Boundary Condition ← “pi+1(x) = 0”
15: i← i + 1 . move to next slope
16: end if

17: if i > k or j ≥ k then return true . we’re done
18: end loop

5. An e-Competitive Strategy for the Non-Additive Case

In this section we consider the non-additive multislope ski rental problem. We present a
simple randomized strategy which improves the best known competitive ratio from 2/ ln 2 =
2.88 to e. Our technique is a simple application of randomized repeated doubling (see,
e.g., [7]), used extensively in competitive analysis of online algorithms. For example, deter-
ministic repeated doubling appears in [1], and a randomized version appears in [13].

Before presenting the strategy let us consider the details of the non-additive model.
Augustine at el. [2] define a general non-additive model in which a transition cost bij is
associated with every two states i and j, and show that one may assume w.l.o.g. that
bij = 0 if i > j and that bij ≤ bj for every i < j. Observe that we may further assume
that bij = bj for every i and j, since the optimal (offline) strategy remains the unchanged.
It follows that the strategies from [3, 4, 6] that were designed for the case of buying slopes
“from scratch” also work for the general non-additive case.

We propose using the following iterative online strategy, which is similar to the one in
[6], except for the choice of the “doubling factor.” Specifically, the jth iteration is associated
with a bound Bj on opt(τ), where τ denotes the termination time of the game. We define

B1
def
= opt(s1)/α

X , where α > 1 and X is a chosen at random uniformly in [0, 1). We also
define Bj+1 = α ·Bj. Let τj = opt−1(Bj) and let ij be the optimal offline state at time τj .
In case there are two such states, i.e., τj = si for some i, we define ij = i − 1. It follows
that i1 = 0. In the beginning of the jth iteration the online strategy buys ij and stays in
ij until the this iteration ends. The jth iteration ends at time τj . Observe that the first
iteration starts with B1 = opt(s1), namely we use slope 0 until s1.

Theorem 5.1. The expected cost of the strategy described above is at most e times the
optimum.
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Proof. Observe that the first iteration starts with B1 = opt(s1), namely we use slope 0
until s1, and hence, if the game ends during the first iteration, i.e., before s1/α

X , then the
online strategy is optimal. Consider now the case where the game ends at time τ ≥ s1/α

X ,
and suppose that τ ∈ [τ`, τ`+1) for ` > 1. In this case, the expected cost of the online
strategy is bounded by

E





∑̀

j=1

opt(τj) + opt(τ)



 ≤ E





`+1
∑

j=1

opt(τj)



 ≤ E

[

α

α− 1
· opt(τ`+1)

]

= E

[

α2−X

α− 1
· opt(τ)

]

=
α

α− 1
·
∫ 1

x=0
αxdx · opt(τ) =

α

lnα
· opt(τ)

By choosing α = e the competitive ratio is α
ln α = e as required.
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