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Abstract. We study a multi-player one-round game termed Stackelberg Network Pricing
Game, in which a leader can set prices for a subset of m priceable edges in a graph. The
other edges have a fixed cost. Based on the leader’s decision one or more followers optimize
a polynomial-time solvable combinatorial minimization problem and choose a minimum
cost solution satisfying their requirements based on the fixed costs and the leader’s prices.
The leader receives as revenue the total amount of prices paid by the followers for priceable
edges in their solutions, and the problem is to find revenue maximizing prices. Our model
extends several known pricing problems, including single-minded and unit-demand pricing,
as well as Stackelberg pricing for certain follower problems like shortest path or minimum
spanning tree. Our first main result is a tight analysis of a single-price algorithm for the
single follower game, which provides a (1+ε) log m-approximation for any ε > 0. This can
be extended to provide a (1+ ε)(log k +log m)-approximation for the general problem and
k followers. The latter result is essentially best possible, as the problem is shown to be
hard to approximate within O(logε

k+logε
m). If followers have demands, the single-price

algorithm provides a (1 + ε)m2-approximation, and the problem is hard to approximate
within O(mε) for some ε > 0. Our second main result is a polynomial time algorithm for
revenue maximization in the special case of Stackelberg bipartite vertex cover, which is
based on non-trivial max-flow and LP-duality techniques. Our results can be extended to
provide constant-factor approximations for any constant number of followers.

1. Introduction

Algorithmic pricing problems model the task of assigning revenue maximizing prices
to a retailer’s set of products given some estimate of the potential customers’ preferences
in purely computational [14], as well as strategic [3] settings. Previous work in this area
has mostly focused on settings in which these preferences are rather restricted, in the sense
that products are either pure complements [2, 7, 15, 16] and every customer is interested in
exactly one subset of products or pure substitutes [1, 8, 10, 14, 15, 16], in which case each
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customer seeks to buy only a single product out of some set of alternatives. A customer’s
real preferences, however, are often significantly more complicated than that and therefore
pose some additional challenges.

The modelling of consumer preferences has received considerable attention in the con-
text of algorithmic mechanism design [18] and combinatorial auctions [12]. The established
models range from relatively simple bidding languages to bidders that are represented by or-
acles allowing certain types of queries, e.g., revealing the desired bundle of items given some
fixed set of prices. The latter would be a somewhat problematic assumption in the theory
of pricing algorithms, where we usually assume to have access to a rather large number of
potential customers through some sort of sampling procedure and, thus, are interested in
preferences that allow for a compact kind of representation.

In this paper we focus on customers that have non-trivial preferences, yet can be fully
described by their types and budgets and do not require any kind of oracles. Assume that a
company owns a subset of the links in a given network. The remaining edges are owned by
other companies and have fixed publicly known prices and some customer needs to purchase
a path between two terminals in the network. Since she is acting rational, she is going to buy
the shortest path connecting her terminals. How should we set the prices on the priceable
edges in order to maximize the company’s revenue? What if there is another customer, who
needs to purchase, e.g., a minimum cost spanning tree?

This type of pricing problem, in which preferences are implicitly defined in terms of some
optimization problem, is usually referred to as Stackelberg pricing [23]. In the standard 2-
player form we are given a leader setting the prices on a subset of the network and a follower
seeking to purchase a min-cost network satisfying her requirements. We proceed by formally
defining the model before stating our results.

1.1. Model and Notation

In this paper we consider the following class of multi-player one-round games. Let
G = (V,E) be a multi-graph. There are two types of players in the game, one leader and
one or more followers. We consider two classes of edge and vertex games, in which either
the edges or the vertices have costs. For most of the paper, we will consider edge games, but
the definitions and results for vertex games follow analogously. In an edge game, the edge
set E is partitioned into two sets E = Ep ∪Ef with Ep ∩Ef = ∅. For each fixed-price edge
e ∈ Ef there is a fixed cost c(e) ≥ 0. For each priceable edge e ∈ Ep the leader can specify
a price p(e) ≥ 0. We denote the number of priceable edges by m = |Ep|. Each follower
i = 1, . . . , k has a set Si ⊂ 2E of feasible subnetworks. The weight w(S) of a subnetwork
S ∈ Si is given by the costs of fixed-price edges and the price of priceable edges,

w(S) =
∑

e∈S∩Ef

c(e) +
∑

e∈S∩Ep

p(e).

The revenue r(S) of the leader from subnetwork S is given by the prices of the priceable
edges that are included in S, i.e.,

r(S) =
∑

e∈S∩Ep

p(e).

Throughout the paper we assume that for any price function p every follower i can in
polynomial time find a subnetwork S∗

i (p) of minimum weight. Our interest is to find the
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pricing function p∗ for the leader that generates maximum revenue, i.e.,

p∗ = arg max
p

k
∑

i=1

r(S∗
i (p)).

We denote the value of this maximum revenue by r∗. To guarantee that the revenue is
bounded and the optimization problem is non-trivial, we assume that there is at least one
feasible subnetwork for each follower i that is composed only of fixed-price edges. In order
to avoid technicalities, we assume w.l.o.g. that among subnetworks of identical weight the
follower always chooses the one with higher revenue for the leader. It is not difficult to see
that in the 2-player case we also need followers with a large number of feasible subnetworks
in order to make the problem interesting.

Proposition 1.1. Given follower j and a fixed subnetwork Sj ∈ Sj, we can compute prices
p with w(Sj) = minS∈Sj

w(S) maximizing r(Sj) or decide that such prices do not exist in
polynomial time. In the 2-player game, if |S| = O(poly(m)), revenue maximization can be
done in polynomial time.

The proof of Proposition 1.1 will appear in the full version. In general we will refer to
the revenue optimization problem by Stack. Note that our model extends the previously
considered pricing models and is essentially equivalent to pricing with general valuation
functions, a problem that has independently been considered in [4]. Every general valuation
function can be expressed in terms of Stackelberg network pricing on graphs, and our
algorithmic results apply in this setting as well.

1.2. Previous Work and New Results

The single-follower shortest path Stackelberg pricing problem (StackSP) has first been
considered by Labbé et al. [17], who derive a bilevel LP formulation of the problem and prove
NP-hardness. Roch et al. [19] present a first polynomial time approximation algorithm with
a provable performance guarantee, which yields logarithmic approximation ratios. Bouhtou
et al. [5] extend the problem to multiple (weighted) followers and present algorithms for a
restricted shortest path problem on parallel links. For an overview of most of the initial
work on Stackelberg network pricing the reader is referred to [22]. A different line of research
has been investigating the application of Stackelberg pricing to network congestion games
in order to obtain low congestion Nash equilibria for sets of selfish followers [11, 20, 21].

More recently, Cardinal et al. [9] initiated the investigation of the corresponding mini-
mum spanning tree (StackMST) game, again obtaining a logarithmic approximation guar-
antee and proving APX-hardness. Their single-price algorithm, which assigns the same price
to all priceable edges, turns out to be even more widely applicable and yields similar ap-
proximation guarantees for any matroid based Stackelberg game.

The first result of our paper is a generalization of this result to general Stackelberg
games. The previous limitation to matroids stems from the difficulty to determine the
necessarily polynomial number of candidate prices that can be tested by the algorithm.
We develop a novel characterization of the small set of threshold prices that need to be
tested and obtain a polynomial time (1+ε)Hm-approximation (where Hm denotes the m’th
harmonic number) for arbitrary ε > 0, which turns out to be perfectly tight for shortest
path as well as minimum spanning tree games. This result is found in Section 2.
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We then extend the analysis to multiple followers, in which case the approximation
ratio becomes (1 + ε)(Hk + Hm). This can be shown to be essentially best possible by an
approximation preserving reduction from single-minded combinatorial pricing [13]. Extend-
ing the problem even further, we also look at the case of multiple weighted followers, which
arises naturally in network settings where different followers come with different routing
demands. It has been conjectured before that no approximation essentially better than the
number of followers is possible in this scenario. We disprove this conjecture by presenting
an alternative analysis of the single-price algorithm resulting in an approximation ratio of
(1 + ε)m2. Additionally, we derive a lower bound of O(mε) for the weighted player case.
This resolves a previously open problem from [5]. The results on multiple followers are
found in Section 3.

The generic reduction from single-minded to Stackelberg pricing yields a class of net-
works in which we can price the vertices on one side of a bipartite graph and players aim
to purchase minimum cost vertex covers for their sets of edges. This motivates us to return
to the classical Stackelberg setting and consider the 2-player bipartite vertex cover game
(StackVC). As it turns out, this variation of the game allows polynomial-time algorithms
for exact revenue maximization using non-trivial algorithmic techniques. We first present
an upper bound on the possible revenue in terms of the min-cost vertex cover not using
any priceable vertices and the minimum portion of fixed cost in any possible cover. Us-
ing iterated max-flow computations, we then determine a pricing with total revenue that
eventually coincides with our upper bound. These results are found in Section 4.

Finally, Section 5 concludes and presents several intriguing open problems for further
research. Some of the proofs have been omitted due to space limitations.

2. A Single-Price Algorithm for a Single Follower

Let us assume that we are faced with a single follower and let c0 denote the cost of
a cheapest feasible subnetwork for the follower not containing any of the priceable edges.
Clearly, we can compute c0 by assigning price +∞ to all priceable edges and simulating
the follower on the resulting network. The single-price algorithm proceeds as follows. For
j = 0, . . . , dlog c0e it assigns price pj = (1 + ε)j to all priceable edges and determines
the resulting revenue r(pj). It then simply returns the pricing that results in maximum
revenue. We present a logarithmic bound on the approximation guarantee of the single-
price algorithm.

Theorem 2.1. Given any ε > 0, the single-price algorithm computes an (1 + ε)Hm-
approximation with respect to r∗, the revenue of an optimal pricing.

2.1. Analysis

The single-price algorithm has previously been applied to a number of different com-
binatorial pricing problems [1, 15]. The main issue in analyzing its performance guarantee
for Stackelberg pricing is to determine the right set of candidate prices. We first derive a
precise characterization of these candidates and then argue that the geometric sequence of
prices tested by the algorithm is a good enough approximation. Slightly abusing notation,
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we let p refer to both price p and the assignment of this price to all priceable edges. If there
exists a feasible subnetwork for the follower that uses at least j priceable edges, we let

θj = max
{

p
∣

∣

∣
|S?(p) ∩ Ep| ≥ j

}

be the largest price at which such a subnetwork is chosen. If no feasible subnetwork with
at least j priceable edges exists, we set θj = 0. As we shall see, these thresholds are the key
to prove Theorem 2.1.

We want to derive an alternative characterization of the values of θj . For each 1 ≤ j ≤ m
we let cj refer to the minimum sum of prices of fixed-price edges in any feasible subnetwork
containing at most j priceable edges, formally

cj = min
{

∑

e∈S∩Ef

fe

∣

∣

∣
S ∈ S : |S ∩ Ep| ≤ j

}

,

and ∆j = c0 − cj. For ease of notation let ∆0 = 0. Consider the set of points (0,∆0),
(1,∆1), . . . , (m,∆m) on the plane. By H we refer to a minimum selection of points spanning
the upper convex hull of the point set. It is a straightforward geometric observation that
we can define H as follows:

Fact 1. Point (j,∆j) belongs to H if and only if mini<j
∆j−∆i

j−i
> maxj<k

∆k−∆j

k−j
.

We now return to the candidate prices. By definition we have that θ1 ≥ θ2 ≥ · · · ≥ θm.
We say that θj is true threshold value if θj > θj+1, i.e., if at price θj the subnetwork chosen
by the follower contains exactly j priceable edges. Let i1 < i2 < · · · < i` denote the indices,
such that θik are true threshold values and for ease of notation define i0 = 0. For an
example, see Figure 1.

Lemma 2.2. θj is true threshold value if and only if (j,∆j) belongs to H.

Proof. ”⇒” Let θj be true threshold value, i.e., at price θj the chosen subnetwork contains
exactly j priceable edges. We observe that at any price p the cheapest subnetwork containing
j priceable edges has cost cj + j · p = c0 − ∆j + j · p. Thus, at price θj it must be the case
that ∆j − j · θj ≥ ∆i − i · θj for all i < j and ∆j − j · θj > ∆k − k · θj for all j < k. It follows
that

min
i<j

∆j − ∆i

j − i
≥ θj > max

j<k

∆k − ∆j

k − j
,

and, thus, we have that (j,∆j) belongs to H.
”⇐” Assume now that (j,∆j) belongs to H and let

p = min
i<j

∆j − ∆i

j − i
.

Consider any k < j. It follows that ∆k −k ·p = ∆j − j ·p− (∆j −∆k)+(j−k)p ≤ ∆j − j ·p,
since p ≤ (∆j − ∆k)/(j − k) and, thus, the network chosen at price p cannot contain less
than j priceable edges. Analogously, let k > j. Using p > (∆k − ∆j)/(k − j) we obtain
∆k − k · p = ∆j − j · p+(∆k −∆j)− (k− j)p < ∆j − j · p, and, thus, the subnetwork chosen
at price p contains exactly j priceable edges. We conclude that θj is a true threshold.
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Figure 1: A geometric interpretation of (true) threshold values θj. The follower seeks to
purchase a shortest path from s to t, dashed edges are fixed-cost.

It is not difficult to see that the price p defined in the second part of the proof of
Lemma 2.2 is precisely the threshold value θj. Let θik be any true threshold. Since points
(i0,∆i0), . . . , (i`,∆i`) define the convex hull we can write that mini<ik(∆ik −∆i)/(ik − i) =
(∆ik − ∆ik−1

)/(ik − ik−1). We state this important fact again in the following lemma.

Lemma 2.3. For all 1 ≤ k ≤ ` it holds that θik =
∆ik

−∆ik−1

ik−ik−1

.

From the fact that points (i0,∆i0), . . . , (i`,∆i`) define the convex hull we know that
∆i` = ∆m, i.e., ∆i` is the largest of all ∆-values. On the other hand, each ∆j describes the
maximum revenue that can be made from a subnetwork with at most j priceable edges and,
thus, ∆m is clearly an upper bound on the revenue made by an optimal price assignment.

Fact 2. It holds that r∗ ≤ ∆i` .

By definition of the θj’s it is clear that at any price below θik the subnetwork chosen by
the follower contains no less than ik priceable edges. Furthermore, for each θik the single-
price algorithm tests a candidate price that is at most a factor (1+ ε) smaller than θik . Let
r(pik), r(θik) denote the revenue that results from assigning price pik or θik to all priceable
edges, respectively.

Fact 3. For each θik there exists a price pik with (1 + ε)−1θik ≤ pik ≤ θik that is tested by
the single-price algorithm. Especially, it holds that r(pik) ≥ (1 + ε)−1r(θik)

Finally, we know that the revenue made by assigning price θik to all priceable edges
is r(θik) = ik · θik . Let r denote the revenue of the single-price solution returned by the
algorithm. We have:

(1 + ε) · Hm · r = (1 + ε)

m
∑

j=1

r

j
≥ (1 + ε)

∑̀

k=1

ik
∑

j=ik−1+1

r

j
≥ (1 + ε)

∑̀

k=1

ik
∑

j=ik−1+1

r(pik)

j

≥
∑̀

k=1

ik
∑

j=ik−1+1

r(θik)

j
≥

∑̀

k=1

ik
∑

j=ik−1+1

ik · θik

j

≥
∑̀

k=1

(ik − ik−1)
ik · θik

ik
=

∑̀

k=1

(∆ik − ∆ik−1
) , by Lemma 2.3

= ∆i` − ∆0 = ∆i` ≥ r∗.
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Figure 2: An instance of Stackelberg Shortest Path, on which the analysis of the approxi-
mation guarantee of the single-price algorithm is tight. Bold edges are priceable,
vertex labels of regular edges indicate cost. The instance yields tightness of the
analysis also for Stackelberg Minimum Spanning Tree.

This concludes the proof of Theorem 2.1.

2.2. Tightness

The example in Figure 2 shows that our analysis of the single-price algorithm’s approx-
imation guarantee is tight. The follower wants to buy a path connecting vertices s and
t. In an optimal solution we set the price of edge ej to m/j. Then edges e1, . . . , em form
a shortest path of cost mHm. On the other hand, assume that all edges e1, . . . , em are
assigned the same price p. Every choice will lead to a revenue of at most m. Similar results
apply if the follower purchases a minimum spanning tree instead of a shortest path.

The best known lower bound for 2-player Stackelberg pricing is found in [9], where
APX-hardness is shown for the minimum spanning tree case. To the authors’ best knowl-
edge, up to now no non-constant inapproximability results have been proven. We proceed
by extending our results to multiple followers, in which case previous results on other com-
binatorial pricing problems yield strong lower bounds.

3. Extension to Multiple Followers

In this section we extend our results on general Stackelberg network pricing to scenarios
with multiple followers. Recall that each follower j is characterized by her own collection
Sj of feasible subnetworks and k denotes the number of followers. Section 3.1 extends the
analysis from the single follower case to prove a tight bound of (1 + ε)(Hk + Hm) on the
approximation guarantee of the single-price algorithm. In addition, it presents an alterna-
tive analysis that applies even in the case of weighted followers and yields approximation
guarantees that do not depend on the number of followers. Section 3.2 derives (near) tight
inapproximability results based on known hardness results for combinatorial pricing. Proofs
are omitted due to space limitations.

3.1. Guarantees of the Single-Price Algorithm

Let an instance of Stackelberg network pricing with some number k ≥ 1 of followers be
given. We obtain a similar bound on the single-price algorithm’s approximation guarantee.

Theorem 3.1. The single-price algorithm computes an (1 + ε)(Hk + Hm)-approximation
with respect to r∗, the revenue of an optimal pricing, for Stack with multiple followers.
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The proof of Theorem 3.1 reduces the problem to the single player case. However, it
relies essentially on the fact that we are considering the single-price algorithm. It does not
imply anything about the relation of these two cases in general.

An even more general variation of Stackelberg pricing, in which we allow multiple
weighted followers, arises naturally in the context of network pricing games with different
demands for each player. This model has been previously considered in [5]. Formally,
for each follower j we are given her demand dj ∈ R

+
0 . Given followers buying subnetworks

S1, . . . , Sk, the leader’s revenue is defined as
∑k

j=1 dj

∑

e∈Sj∩Ep
p(e). It has been conjectured

before that in the weighted case no approximation guarantee essentially beyond O(k · log m)
is possible [19]. We show that an alternative analysis of the single-price algorithm yields
ratios that do not depend on the number of followers.

Theorem 3.2. The single-price algorithm computes an (1 + ε)m2-approximation with re-
spect to r∗, the revenue of an optimal pricing, for Stack with multiple weighted followers.

3.2. Lower Bounds

Hardness of approximation of Stackelberg pricing with multiple followers follows imme-
diately from known results about other combinatorial pricing models. Theorem 3.3 is based
on a reduction from the (weighted) unit-demand envy-free pricing problem with uniform
budgets, which is known to be inapproximable within O(mε) (m denotes the number of
products) [6]. Here we are given a universe of products and a collection of (weighted) cus-
tomers, each of which buys the cheapest product out of some set of alternatives with a price
not exceeding her budget. The resulting Stackelberg game is an instance of the so-called
river tariffication problem. Each player needs to route her demand along one out of a num-
ber of parallel links connecting her respective source and sink pair. One direct fixed price
connection determines her maximum budget for purchasing a priceable link. Theorem 3.3
resolves an open problem from [5]. The construction is depicted in Figure 3(a).

Theorem 3.3. The Stackelberg network pricing problem with multiple weighted followers

is hard to approximate within O(mε) for some ε > 0, unless NP ⊆
⋂

δ>0 BPTIME(2nδ
).

The same holds for the river tariffication problem.

Theorem 3.4 is based on a reduction from the single-minded combinatorial pricing
problem, in which each customer is interested in a subset of products and purchases the
whole set if the sum of prices does not exceed her budget. Single-minded pricing is hard to
approximate within O(logε k+logε m) [13], where k and m denote the numbers of customers
and products, respectively. Theorem 3.4 shows that the single-price algorithm is essentially
best possible for multiple unweighted followers.

Theorem 3.4. The Stackelberg network pricing problem with multiple unweighted follow-
ers is hard to approximate within O(logε k + logε m) for some ε > 0, unless NP ⊆

⋂

δ>0

BPTIME(2nδ
). The same holds for bipartite Stackelberg Vertex Cover Pricing (StackVC).

The idea for the proof of Theorem 3.4 is illustrated in Figure 3(b). We define an instance
of StackVC in bipartite graphs. Vertices on one side of the bipartition are priceable and
represent the universe of products, vertices on the other side encode customers and have
fixed prices corresponding to the respective budgets. For each customer we define a follower
in the Stackelberg game with edges connecting the customer vertex and all product vertices
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(a) (b)

Figure 3: Reductions from pricing problems to Stackelberg pricing. (a) Unit-demand re-
duces to directed StackSP. Bold edges are priceable, edge labels indicate cost.
Regular edges without labels have cost 0. Vertex labels indicate source-sink pairs
for the followers. (b) Single-minded pricing reduces to bipartite StackVC. Filled
vertices are priceable, vertex labels indicate cost. For each customer there is one
follower, who strives to cover all incident edges.

the customer wishes to purchase. Now every follower seeks to buy a min-cost vertex cover
for her set of edges. We proceed by taking a closer look at this special type of Stackelberg
pricing game and especially focus on the interesting case of a single follower.

4. Stackelberg Vertex Cover

Stackelberg Vertex Cover Pricing is a vertex game, however, the approximation results
for the single-price algorithm continue to hold. Note that in general the vertex cover problem
is hard, hence we focus on settings, in which the problem can be solved in polynomial time.
In bipartite graphs the problem can be solved optimally by using a classic and fundamental
max-flow/min-cut argumentation. If all priceable vertices are in one side of the partition,
then for multiple followers there is evidence that the single-price algorithm is essentially best
possible. Our main theorem in this section states that the setting with a single follower can
be solved exactly. As a consequence, general bipartite StackVC can be approximated by
a factor of 2.

Theorem 4.1. If for a bipartite graph G = (A ∪ B,E) we have Vp ⊆ A, then there is a
polynomial time algorithm computing an optimal price function p∗ for StackVC.

Before we prove the theorem, we mention that the standard problem of minimum vertex
cover in a bipartite graph G with disjoint vertex sets A, B and edges E ⊆ A × B can be
solved by the following application of LP-duality. The LP-dual is interpreted as a maximum
flow problem on an adjusted flow network Gd. In particular, Gd is constructed by adding a
source s and a sink t to G and connecting s to all vertices v ∈ A with directed edges (s, v),
and t to all vertices v ∈ B with directed edges (v, t). Each such edge gets as capacity the
cost of the involved original vertex - i.e. p(v) for v ∈ Vp or c(v) if v ∈ Vf . Furthermore, all
original edges of the graph are directed from A to B and their capacity is set to infinity.
The value of a maximum s-t-flow equals the cost of a minimum cut, and in addition the
cost of a minimum cost vertex cover of the graph G (for an example see Figure 4). To
obtain such a cover consider an augmenting s-t-path in Gd, which is a path traversing only
forward edges with slack capacity and backward edges with non-zero flow. The maximum
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(a) (b) (c)

Figure 4: Construction to solve bipartite StackVC with priceable vertices in one partition
and a single follower. Filled vertices are priceable, vertex labels indicate cost. (a)
A graph G; (b) The flow network Gd obtained from G. Grey parts are source and
sink added by the transformation. Edge labels indicate a suboptimal s-t-flow; (c)
An augmenting path P indicated by bold edges and the resulting flow. Every
such path P starts with a priceable vertex, and all priceable vertices remain in
the optimum cover at all times.

flow can be computed by iteratively increasing flow along such paths. The vertices in the
minimum vertex cover then correspond to incident edges in a minimum cut. In particular,
the minimum vertex cover includes a vertex v ∈ A if the flow allows no augmenting s-v-path
from s to v, i.e. if every path from s to v has at least one backward edge with no flow, or
at least one forward edge without slack capacity.

We use a similar idea to obtain the optimal pricing for StackVC. Let n = |Vp| and
the values cj for 1 ≤ j ≤ n denote the minimum sum of prices of fixed-price vertices in any
feasible subnetwork containing at most j priceable vertices. Then, ∆j = c0 − cj are again
upper bounds on the revenue that can be extracted from a network that includes at most
j priceable vertices. We thus have r∗ ≤ ∆n.

Algorithm 1: Solving StackVC in bipartite graphs with Vp ⊆ A

Construct the flow network Gd by adding nodes s and t1

Set p(v) = 0 for all v ∈ Vp2

Compute a maximum s-t-flow φ in Gd3

while there is v ∈ Vp s.t. increasing p(v) yields an augmenting s-t-path P do4

Increase p(v) and φ along P as much as possible5

Suppose all priceable vertices are located in one partition Vp ⊆ A and consider Algo-
rithm 1. We denote by CALG the cover calculated by Algorithm 1. At first, when computing
the maximum flow on Gd holding all p(v) = 0, the algorithm obtains a flow of cn. We first
note that in the following while-loop we will never face a situation, in which there is an
augmenting s-t-path (traversing forward edges with slack capacity and backward edges with
non-zero flow) starting with a fixed-price vertex. We call such a path a fixed path, while an
augmenting s-t-path starting with a priceable vertex is called a price path.

Lemma 4.2. Every augmenting path considered in the while-loop of Algorithm 1 is a price
path.

Proof. We prove the lemma by induction on the while-loop and by contradiction. Suppose
that in the beginning of the current iteration there is no fixed path. In particular, this is
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true for the first iteration of the while-loop. Then, suppose that after we have increased the
flow over a price path Pp, a fixed path Pf is created. Pf must include some of the edges of
Pp. Consider the vertex w at which Pf hits Pp. By following Pf from s to w and Pp from
w to t there is a fixed path, which must have been present before flow was increased on Pp.
This is a contradiction and proves the lemma.

Recall from above that the optimum cover contains a vertex v ∈ A if there is no
augmenting s-v-path from s to v. In particular, this means that for a vertex v ∈ A ∩ C the
following two properties are fulfilled: (1) there is no slack capacity on edge (s, v); (2) there
is no augmenting s-v-path from s over a different vertex v ′ ∈ A. As the algorithm always
adjusts the price of a vertex v to equal the current flow on (s, v), only the violation of
property (2) can force a vertex v ∈ Vp to leave the cover. In particular, such an augmenting
s-v-path must start with a fixed-price vertex, and it must reach v by decreasing flow over
one of the original edges (v, w) for w ∈ B. We call such a path a fixed v-path.

Lemma 4.3. Algorithm 1 creates no fixed v-path for any priceable vertex v ∈ Vp.

The proof of Lemma 4.3 is similar to the proof of Lemma 4.2 and will appear in the
full version. As there is no augmenting path from s to any priceable vertex at any time,
the following lemma is now obvious.

Lemma 4.4. CALG includes all priceable vertices.

Proof of Theorem 4.1. Finally, we can proceed to argue that the computed pricing is
optimal. Suppose that after executing Algorithm 1 we increase p(v) over φ(s, v) for any
priceable vertex v. As we are at the end of the algorithm, it does not allow us to increase
the flow in the same way. Thus, the adjustment creates slack capacity on all the edges (s, v)
for any v ∈ Vp and causes every priceable vertex to leave CALG. The new cover must be
the cheapest cover that excludes every priceable vertex, i.e. it must be C0 and have cost
c0. As we have not increased the flow, we know that the cost of CALG is also c0. Note
that before starting the while-loop the cover was Cn of cost cn. As all flow increase in the
while-loop was made over price paths and all the priceable vertices stay in the cover, the
revenue of CALG must be c0 − cn = ∆n. This is an upper bound on the optimum revenue,
and hence the price function pALG derived with the algorithm is optimal. Finally, notice
that adjusting the price of the priceable vertices in each iteration is not necessary. We can
start with computing Cn and for the remaining while-loop set all prices to +∞. This will
result in the desired flow, which directly generates the final price for every vertex v as flow
on (s, v). Hence, we can get optimal prices with an adjusted run of the standard polynomial
time algorithm for maximum flow in Gd. This proves Theorem 4.1.

Theorem 4.5. There is a polynomial time 2-approximation algorithm for bipartite StackVC.

In Theorem 4.5 we use the previous analysis to get a 2-approximation of the optimum
revenue for general bipartite StackVC. This results in a 2k-approximation for any number
of k followers. In contrast, the analysis of the single-price algorithm is tight even for one
follower and all priceable vertices in one partition. Moreover, bipartite StackVC for at
least two followers is NP-hard by a reduction from the highway pricing problem [7].

5. Open problems

There are a number of important open problems that arise from our work. We believe
that the single-price algorithm is essentially best possible even for a single follower and
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general Stackelberg pricing games. However, there is no matching logarithmic lower bound,
and the best lower bound remains APX-hardness from [9]. In addition, we believe that for
weighted followers a better upper bound than m2 is possible, which would decrease the gap
to the Ω(mε) lower bound we observed. More generally, extending other algorithm design
techniques to cope with pricing problems is a major open problem.
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