
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 349-360
www.stacs-conf.org

ON THE COMPLEXITY OF ELEMENTARY MODAL LOGICS

EDITH HEMASPAANDRA AND HENNING SCHNOOR

Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
E-mail address, Edith Hemaspaandra: eh@cs.rit.edu

E-mail address, Henning Schnoor: hs@cs.rit.edu

Abstract. Modal logics are widely used in computer science. The complexity of modal
satisfiability problems has been investigated since the 1970s, usually proving results on
a case-by-case basis. We prove a very general classification for a wide class of relevant
logics: Many important subclasses of modal logics can be obtained by restricting the
allowed models with first-order Horn formulas. We show that the satisfiability problem
for each of these logics is either NP-complete or PSPACE-hard, and exhibit a simple
classification criterion. Further, we prove matching PSPACE upper bounds for many of
the PSPACE-hard logics.

1. Introduction

Modal logics have proven to be a valuable tool in mathematics and computer science.
The traditional uni-modal logic enriches the propositional language with the operator ♦,
where ♦ϕ is interpreted as ϕ possibly holds. The usual semantics interpret modal formulas
over graphs, where ♦ϕ means “there is a successor world where ϕ is true.” In addition
to their mathematical interest, modal logics are widely used in practical applications: In
artificial intelligence, modal logic is used to model the knowledge and beliefs of an agent,
see e.g. [BZ05]. Modal logics also can be applied in cryptographic and other protocols
[FHJ02, CDF03, HMT88, LR86]. For many specific applications, there exist tailor-made
variants of modal logics [BG04].

Due to the vast number of applications, complexity issues for modal logics are very
relevant, and have been examined since Ladner’s seminal work [Lad77]. Depending on the
application, modal logics with different properties are studied. For example, one might
want the formula ϕ → ♦ϕ to be an axiom—if something is true, then it should be consid-
ered possible. Or ♦♦ϕ → ♦ϕ—if it is possible that ϕ is possible, then ϕ itself should be
possible. Classical results [Sah73] show that there is a close correspondence between modal
logics defined by axioms and logics obtained by restricting the class of considered graphs.
Requiring the axioms mentioned above corresponds to restricting the classes of graphs to
those which are reflexive or transitive, respectively. Determining the complexity of a given
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modal logic, defined either by the class of considered graphs or via a modal axiom system,
has been an active line of research since Ladner’s results. In particular, the complexity
classes NP and PSPACE have been at the center of attention.

Most complexity results have been on a case-by-case basis, proving results for individual
logics both for standard modal logics and variations like temporal or hybrid logics [HM92,
Ngu05, SC85]. Examples of more general results include Halpern and Rêgo’s proof that
logics including the negative introspection axiom, which corresponds to the Euclidean graph
property, have an NP-complete satisfiability problem [HR07]. In [SP06], Schröder and
Pattinson show a way to prove PSPACE upper bounds for modal logics defined by modal
axioms of modal depth 1. In [Lad77], Ladner proved PSPACE-hardness for all logics for
which reflexive and transitive graphs are admissible models. In [Spa93], Hemaspaandra
showed that all normal logics extending S4.3 have an NP-complete satisfiability problem,
and work on the Guarded Fragment has shown that some classes of modal logics can be
seen as a decidable fragment of first-order logic [AvBN98].

While these results give hardness or upper bounds for classes of logics, they do not
provide a full case distinction identifying all “easy” or “hard” cases in the considered class.
We achieve such a result: For a large class of modal logics containing many important
representatives, we identify all cases which have an NP-complete satisfiability problem, and
show that the satisfiability problem for all other non-trivial logics in that class is PSPACE-
hard. Hence these problems avoid the infinitely many complexity classes between NP and
PSPACE, many of which have natural complete problems arising from logical questions. To
our knowledge, such a general result has not been achieved before.

To describe the considered class of modal logics, note that many relevant properties
of modal models can be expressed by first-order formulas: A graph is transitive if its
edge-relation R satisfies the clause ∀xyz (xRy ∧ yRz → xRz) and symmetric if it satis-
fies ∀xy (xRy → yRx). Many other graph properties can be defined using similar formulas,
where the presence of a certain pattern of edges in the graph forces the existence of another.
Analogously to propositional logic, we call conjunctions of such clauses universal Horn for-
mulas. Many relevant logics can be defined in this way: All examples form [Lad77] fall into
this category, as well as logics over Euclidean graphs.

We study the following problem: Given a universal Horn formula ψ̂, what is the com-
plexity of the modal satisfiability problem over the class of graphs defined by ψ̂?

The main results of this paper are the following: First, we identify all cases which give a
satisfiability problem solvable in NP (which then for every nontrivial logic is NP-complete),
and show that all other cases are PSPACE-hard. Second, we prove a generalization of a
“tree-like model property,” and use it to obtain PSPACE upper bounds for a large class of
logics. As a corollary, we prove that Ladner’s classic hardness result is “optimal” in the class
of logics defined by universal Horn formulas. A further corollary is that in the universal
Horn class, all logics whose satisfiability problem is not PSPACE-hard already have the
“polynomial-size model property,” which is only one of several known ways to prove NP
upper bounds for modal logics.

Various work was done on restricting the syntax of the modal formulas by restricting
the propositional operators [BHSS06], the nesting degree and number of variables [Hal95] or
considering modal formulas in Horn form [CL94]. While these results are about restricting
the syntax of the modal formulas, the current work studies different semantics of modal
logics, where the semantics are specified by Horn formulas.
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logic name graph property formula definition
K All graphs K(ϕ̂taut)
T reflexive K(ϕ̂refl)
B symmetric K(ϕ̂symm)
K4 transitive graphs K(ϕ̂trans)
S4 transitive and reflexive K(ϕ̂trans ∧ ϕ̂refl)
S5 equivalence relations K(ϕ̂trans ∧ ϕ̂refl ∧ ϕ̂symm)

Table 1: Common modal logics

In Section 2, we introduce terminology and generalize classic complexity results. Sec-
tion 3 introduces universal Horn formulas and states our main result. In Section 4, we
explain the main ideas of the proof, before we obtain matching PSPACE upper bounds
for many of the involved logics in Section 5, generalizing many previously known results.
Proofs and precise definitions can be found in the full version of the paper.

2. Preliminaries

2.1. Basic Concepts and Notation

Modal logic is an extension of propositional logic. A modal formula is a propositional
formula using variables, the usual logical symbols ∧,∨,¬, and a unary operator ♦. (A dual
operator � is often considered as well, this can be regarded as abbreviation for ¬♦¬.) A
model for a modal formula is a set of connected “worlds” with individual propositional
assignments. To be precise, a frame is a directed graph G = (W,R), where the vertices in
W are called “worlds,” and an edge (u, v) ∈ R is interpreted as v is “considered possible”
from u. A model M = (G,X, π) consists of a frame G = (W,R), a set X of propositional
variables and a function π assigning to each variable x ∈ X a subset of W, the set of worlds
in which x is true. We say the model M is based on the frame (W,R). If F is a class of
frames, then a model is an F-model if it is based on a frame in F . With |M | we denote the
number of worlds in M. For a world w ∈ W, we define when a modal formula φ is satisfied
at w in M (written M,w |= φ). If φ is a variable x, then M,w |= φ if and only if w ∈ π(x).
As usual, M,w |= φ1 ∧ φ2 if and only if M,w |= φ1 and M,w |= φ2, and M,w |= ¬φ iff
M,w 6|= φ. For the modal operator, M,w |= ♦φ if and only if there is a world w′ ∈W such
that (w,w′) ∈ R and M,w′ |= φ.

We describe a way to define classes of frames with propositional formulas. The frame
language is the first-order language containing (in addition to the operators ∧,∨, and ¬) the
binary relation R, which is interpreted as the edge relation in a graph. Semantics are defined
in the obvious way, e.g., a graph satisfies the formula ϕ̂trans := ∀xyz(xRy ∧ yRz → xRz) if
and only if it is transitive. In order to separate modal formulas from first-order formulas,
we use .̂ to denote the latter, e.g., ϕ̂ is a first-order formula, while φ is a modal formula.

A modal logic usually is defined as the set of the formulas provable in it. Since a formula
is satisfiable iff its negation is not provable, we can define a logic by the set of formulas
satisfiable in it. For a first-order formula ψ̂ over the frame language, we define the logic
K(ψ̂) as the logic in which a modal formula φ is satisfiable if and only if there is a model
M and a world w ∈ M such that the frame which M is based on satisfies ψ̂ (we simply
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write M |= ψ̂ for this), and M,w |= φ. Many relevant modal logics can be expressed in
this way: In addition to the formula ϕ̂trans defined above, let ϕ̂refl := ∀w(wRw), and let
ϕ̂symm := ∀xy(xRy → yRx). Finally, let ϕ̂taut be some tautology over the frame language.
Table 1 introduces common modal logics and how they can be expressed in our framework.
For a formula ψ̂ over the frame language, we consider the following problem:

Problem: K(ψ̂)-SAT
Input: A modal formula φ
Question: Is φ satisfiable in a model based on a frame satisfying ψ̂?

As an example, the problem K(ϕ̂trans)-SAT is the problem of deciding if a given modal
formula can be satisfied in a transitive frame, and is the same as the satisfiability problem for
the logic K4. In the problem K(ψ̂)-SAT, the formula ψ̂ is fixed. It is also interesting to study
the uniform version of the problem, where we are given a formula ψ̂ over the frame language
and a modal formula φ, and the goal is to determine whether there exists a model satisfying
both. This problem obviously is PSPACE-hard (this easily follows from Theorem 2.2). In
this paper, we study the complexity behavior of fixed modal logics, and focus on the NP-
PSPACE-gap in complexity. The property of having “small models” is often crucial, as
these often lead to a satisfiability problem in NP. A modal logic KL has the polynomial-size
model property, if there is a polynomial p, such that for every KL-satisfiable formula φ, there
is a KL-model M and a world w ∈ M such that M,w |= φ, and |M | ≤ p(|φ|). Since modal
logic is an extension of propositional logic, the satisfiability problem for every non-trivial
modal logic is NP-hard. Hence, showing that a modal logic has a satisfiability problem in
NP is an optimal complexity bound. The following standard observation is the basis of our
NP containment proofs:

Proposition 2.1. Let ψ̂ be a first-order formula over the frame language, such that K(ψ̂)
has the polynomial-size model property. Then K(ψ̂)-SAT ∈ NP.

2.2. Ladner’s Theorem and Applications

In [Lad77], Ladner proved complexity results for a variety of modal logics. An extension
of a modal logic KL is a modal logic KL′ such that every formula which is valid in KL is also
valid in KL′, or equivalently such that every KL′-satisfiable formula is KL-satisfiable. For
example, every logic that we consider is an extension of K, and S4 is an extension of K4. It
is easy to see that if ψ̂1 and ψ̂2 are formulas over the frame language such that ψ̂1 implies
ψ̂2, then K(ψ̂1) is an extension of K(ψ̂2). Ladner’s main result can be stated as follows.

Theorem 2.2 ([Lad77]). (1) The satisfiability problems for K,K4, and S4 are PSPACE-
complete, and S5-SAT is NP-complete.

(2) If S4 is an extension of KL, and KL extends K, then KL-SAT is PSPACE-hard.

The ideas from Ladner’s proof for Theorem 2.2 can be extended to show similar results.
We define a generalization of transitivity. For a number k, we say that a graph G is k-
transitive if for every pair of vertices u, v in G such that there is a k-step path from u to v
in G, there is an edge (u, v). Note that a graph is transitive if and only if it is 2-transitive.
For a set S ⊆ N, a graph is S-transitive if it is k-transitive for every k ∈ S. A strict
tree is a directed connected graph which has a root w from which all other vertices can
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be reached via a unique path. A reflexive/S-transitive/symmetric tree is the reflexive/S-
transitive/symmetric closure of a strict tree.

Theorem 2.3. Let ψ̂ be a first-order formula over the frame language such that one of the
following cases applies:

• ψ̂ is satisfied in every strict tree,
• ψ̂ is satisfied in every reflexive tree,
• there is a set S ⊆ N such that ψ̂ is satisfied in every S-transitive tree,
• ψ̂ is satisfied in every symmetric tree,
• ψ̂ is satisfied in every tree which is both reflexive and symmetric,
• there is a set S ⊆ N such that ψ̂ is satisfied in every tree which is both reflexive and
S-transitive.

Then K(ψ̂)-SAT is PSPACE-hard and K(ψ̂) does not have the polynomial-size model
property.

This theorem follows with straightforward observations from Ladner’s proof, by apply-
ing the well-known tree-model property for the involved logics, and using similar ideas for
the case of symmetric models. In the next section, we will present the main result of this
paper: In the class of modal logics defined by universal Horn formulas, all non-trivial cases
that are not covered by Theorem 2.3 have an NP-complete satisfiability problem.

3. Universal Horn Formulas and the Main Result

We now consider a syntactically restricted case of universal first-order formulas, namely
Horn formulas. Many well-known modal logics can be expressed in this way. Usually, a
Horn clause is defined as a disjunction of literals of which at most one is positive. If a
positive literal occurs, then the clause x1 ∨ · · · ∨ xn ∨ y can be written as the implication
x1 ∧ · · · ∧ xn → y. Since in the context of the frame language, an atomic proposition is of
the form xRy, the following is the natural version of Horn clauses for our purposes:

Definition 3.1. A universal Horn clause over the basic frame language is a formula of the
form x1

1Rx
1
2 ∧ · · · ∧ xk

1Rx
k
2 → C, where C is of the form xRy or C = false, where all (not

necessarily distinct) variables are implicitly universally quantified.

A universal Horn formula is a conjunction of universal Horn clauses. Due to space
reasons, in this paper we only consider Horn clauses of the first form (known as positive
Horn clauses), our results hold for the second form analogously. With universal Horn
formulas, many of the frame properties usually considered can be expressed, like transitivity,
symmetry, euclidicity, etc. We now state the classification theorem:

Theorem 3.2. Let ψ̂ be a universal Horn formula. Then either ψ̂ satisfies the condition
from Theorem 2.3, (and thus K(ψ̂)-SAT is PSPACE-hard) or K(ψ̂) has the polynomial-size
model property and K(ψ̂)-SAT ∈ NP.

4. A Proof Sketch

We now give an overview of the ideas used to prove our main result. We first show
that universal Horn clauses can be represented as graphs in such a way that the properties
of the involved logics can be characterized with homomorphic images of the defining Horn
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clauses. In Section 4.2, we then demonstrate at an example how NP results can be shown
for universal Horn clauses, before outlining the strategy for the proof of Theorem 3.2.

4.1. Universal Horn clauses and homomorphisms

For a universal Horn clause ϕ̂ = x1
1Rx

1
2 ∧ · · · ∧ xk

1Rx
k
2 → xRy, the prerequisite graph of

ϕ̂, denoted with prereq (ϕ̂), consists of the variables appearing on the left-hand side of the
implication ϕ̂ as vertices, where for variables u, v ∈

{
x1

1, . . . , x
k
2

}
, there is an edge (u, v)

if the clause uRy appears on the left-hand side of the formula. The conclusion edge of ϕ̂,
denoted with conc (ϕ̂) , is the edge (x, y). As usual, a homomorphism between graphs is a
function on the vertices preserving the edge relation. The definition of the prerequisite graph
and the conclusion edge of a universal Horn formula establishes a one-to-one correspondence
between universal Horn clauses and their representation as graphs. These definitions allow
us to relate truth of a Horn clause to homomorphic images of the involved graphs. In the
following, prereq (ϕ̂)∪{x, y} is the graph obtained from prereq (ϕ̂) by adding (if not already
present) the vertices x and y, but no additional edges.

Proposition 4.1. Let ϕ̂ be a universal Horn clause with conc (ϕ̂) = (x, y). A graph G
satisfies ϕ̂ if and only if for every homomorphism α : prereq (ϕ̂) ∪ {x, y} → G, there is an
edge (α(x), α(y)) in G.

This observation is central, as it shows that properties of a logic K(ϕ̂) depend on the
types of homomorphic images of prereq (ϕ̂) .

4.2. Example of a Case in NP

w

x1

x2

y1

y2

y3

y4

Figure 1: ϕ̂2→4

We now give an example of the proof of NP membership. Let
ϕ̂k→l be the formula wRx1∧x1Rx2∧ · · · ∧xk−1Rxk ∧wRy1∧ y1Ry2∧
· · · ∧ yl−1Ryl → xkRyl, where all variables are universally quantified
(and in the case that k = 0 or l = 0, we replace x0 or y0 with w). In
Figure 1, we present the graph representation of the formula ϕ̂2→4.
A graph G satisfies ϕ̂k→l if and only if for any nodes w, xk, yl ∈ G, if
there is a k-step path from w to xk and an l-step path from w to yl,
then (xk, yl) is an edge in G. This definition generalizes several well-
known examples: A graph is reflexive if and only if it satisfies ϕ̂0→0,
symmetry is expressed with ϕ̂1→0, and k-transitivity with ϕ̂0→k. A
graph is Euclidean iff it satisfies ϕ̂1→1. Thus, this notation allows us
to capture many interesting graph properties. We give the proof idea
for a relatively easy special case. Generalizations of this idea are the
main ingredients for our polynomial-size model proofs.

Theorem 4.2. Let k ≥ 1, and let ψ̂ be a universal formula over the frame language such that
ψ̂ implies ϕ̂k→k. Then K(ψ̂) has the polynomial-size model property, and K(ψ̂)-SAT ∈ NP.

Proof Sketch. It suffices to prove the polynomial-size model property. We need to show
that every K(ψ̂)-satisfiable formula φ has a “small” model. Let M be a model and w a
world such that M,w |= φ, and M also satisfies the first-order formula ψ̂, in particular it
then satisfies ϕ̂k→k, which means that for t, u, v in M, if there is a k-step path from t to
u and also from t to v, then (u, v) is an edge in M. Note that since ψ̂ is universal, every
restriction of M still satisfies ψ̂. With a standard construction, we can restrict the number
of vertices in M which do not have a k-step predecessor to polynomial size.
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We show that the edge relation restricted to the set C of nodes having k-step prede-
cessors is an equivalence relation, then with a standard argument (similar to the proof for
the logic S5), we can pick one world for every satisfied subformula of φ from polynomially
many “clusters” in C, and obtain a small submodel M ′ of M satisfying M ′, w |= φ.

We first show that every node v in C is reflexive: It has a k-step predecessor t, and
hence by the ϕ̂k→k-property, there is an edge (v, v). We show that C is symmetric: Let
(u, v) be an edge in C. From the above, we know that both of these nodes are reflexive in
C. Hence there is a k-step path from u to both u and v. From the ϕ̂k→k-property, it follows
that (v, u) is an edge. Finally, we prove that C is transitive. Let (t, u) and (u, v) be edges
in C. Since we already showed that C is symmetric, we know that (u, t) is an edge as well.
Since all of the involved nodes are also reflexive, there is a k-step path from u to both t and
v, implying that (t, v) is an edge as well. �

The analog of Theorem 4.2 can be shown to hold for many other cases, for example
showing that all logics of the form K(ϕ̂k→l) for 1 ≤ k, l or k ≥ 2, l = 0 have satisfiability
problems in NP. Note that the case k = 1 of Theorem 4.2 follows from the main result
of [HR07]. Our results and theirs are incomparable: They achieve the NP result for all
modal logics extending what in our notation is K(ϕ̂1→1), where our results only hold for
logics defined by universal formulas. On the other hand, Theorem 3.2 gives NP membership
for a large class of logics which do not follow from their result, namely all logics defined by
universal Horn formulas not satisfied on the various forms of trees mentioned in Theorem 2.3.

Similarly to Proposition 4.1, it can be shown that there is a close relationship between
implications of Horn clauses and homomorphisms between their prerequisite graphs. This
relationship and Theorem 4.2 imply that every universal Horn clause which can be ho-
momorphically mapped into the clause ϕ̂k→k in an appropriate way defines a logic having
the polynomial-size model property and a satisfiability problem in NP. Therefore we can
collect “homomorphism properties” of Horn clauses that guarantee this property of the
corresponding logics (we need to be careful with what a homomorphism exactly is in this
context—we will not go into the technical details here). We can define a class HNP of
graphs, containing among others representations of generalizations of ϕ̂k→l for those k, l
leading to the polynomial-size model property, which has the following properties:

(1) For all universal Horn clauses ϕ̂ which can be homomorphically mapped into an
element of HNP, K(ϕ̂) has the polynomial-size model property, and K(ϕ̂)-SAT ∈ NP.

(2) HNP is large enough to form the basic building blocks of almost all of our NP results.
An example for a graph in HNP is the following: If a clause ϕ̂ with conc (ϕ̂) = (x, y) can

be mapped into a “generalized line” (l0, . . . , ln) with a homomorphism α satisfying α(y) = li
and α(x) = li+k for k ≥ 2, then the NP conditions are met. This is satisfied, for example,
for clauses of the form ϕ̂k→0 for k ≥ 2. While the set HNP contains a large class of graphs,
on its own it is not sufficient to prove all NP results for logics defined by universal Horn
formulas. The main reason is that it does not take into account interference between clauses
in Horn formulas. For example, it is well known that reflexivity, symmetry, and transitivity
alone lead to PSPACE-complete logics. But the combination of these requirements defines
the logic S5, which has a satisfiability problem in NP. Hence, interference between clauses
in a Horn formulas is of crucial importance for the complexity of the defined logic.
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4.3. An Alternative Formulation and Proof Idea of the Main Theorem

We give an idea of the main strategy used to prove the classification Theorem 3.2. For
this, we restate the complexity classification as the algorithm Horn-Classification (see
Figure 3) which, given a universal Horn formula ψ̂ as input, determines the complexity of
K(ψ̂)-SAT. The output of the algorithm and the statement of Theorem 3.2 agree in all cases.
The purpose of the algorithm is not to be implemented, but to serve as a case distinction
used to prove Theorem 3.2, and several later corollaries.

The idea of the algorithm is the following: In types-list, it maintains a list of implications
of the formula ψ̂. For example, Horn-Classification puts refl into types-list if it detects
the formula ψ̂ to require any graph G satisfying it to be “near reflexive” (every vertex
having long enough paths ending in and originating in it must be reflexive). Similarly,
symm ∈ types-list (transk ∈ types-list) means that ψ̂ requires a graph to be “near symmetric”
(“near k-transitive”). The occurring class Htypes-list

NP is a generalization of the set HNP

introduced earlier. Since we are not considering only individual clauses anymore, this
class is not constant, but dynamically grows corresponding to collected implications of the
formula kept in types-list. For example, H{refl}NP contains reflexive closures of elements in
HNP.

If Horn-Classification detects that a clause ϕ̂ can be mapped into an element of
Htypes-list

NP , then the clause ϕ̂, in addition with the requirements kept in types-list, implies the
polynomial-size model property. Another condition leading to NP containment of the logic
is the following: It is well known that the modal logic over the class of frames which are
both transitive and symmetric has a satisfiability problem in NP. Generalizing this, when
Horn-Classification detects that ψ̂ implies “near symmetry” and “near k-transitivity,”
this also leads to NP solvability of the satisfiability problem.

For a set types-list ⊆
{
refl, symm, transk | k ∈ N

}
, a graph G satisfies the conditions

of types-list if it has the corresponding properties, i.e., if refl ∈ types-list (symm ∈ types-list,
transk ∈ types-list), then G is required to be reflexive (symmetric, k-transitive). A types-list
tree is obtained from a strict tree by adding exactly those edges required to make it sat-
isfy the conditions of types-list (this is a natural closure operator). For a universal Horn
clause ϕ̂, let types-list-T hom

ϕ̂ denote the pairs (α, T ) such that T is a types-list tree, and
α : prereq (ϕ̂)→ T is a homomorphism. Due to Proposition 4.1, this is the set of types-list
trees about which the clause ϕ̂ “makes a statement,” along with the corresponding homo-
morphisms.

f

s

x

d

a

e

b c

y

t

Figure 2: Example Formula

We now define the properties of Horn clauses
which do not lead to NP containment of the sat-
isfiability problems on their own. Recalling Sec-
tion 2.2, it is natural that clauses which are sat-
isfied in every reflexive, transitive, or symmetric
tree are among these. This is captured by the fol-
lowing definitions: If ϕ̂ is a universal Horn clause

with conc (ϕ̂) = (x, y), we say that (ϕ̂, types-list) satisfies the reflexive case, if for every
(α, T ) ∈ types-list-T hom

ϕ̂ it holds that α(x) = α(y). (ϕ̂, types-list) satisfies the transitive case
for k ∈ N, if for every (α, T ) ∈ types-list-T hom

ϕ̂ there is a path from α(x) to α(y) in T, and
there is some (α, T ) ∈ types-list-T hom

ϕ̂ such that α(y) is exactly k levels below α(x) in T.

Finally, (ϕ̂, types-list) satisfies the symmetric case if for every (α, T ) ∈ types-list-T hom
ϕ̂ , there
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Input: Universal Horn formula ψ̂
types-list := ∅
while not done do

if every clause in ψ̂ is satisfied on every types-list tree then
K(ψ̂)-SAT is PSPACE-hard

end if
Let ϕ̂ be a clause in ψ̂ not satisfied on every types-list tree
if ϕ̂ can homomorphically be mapped into a graph from Htypes-list

NP then
K(ψ̂) has the polynomial-size model property, and K(ψ̂)-SAT ∈ NP.

else
if (ϕ̂, types-list) satisfies the reflexive case then

types-list := types-list ∪ {refl}
else if (ϕ̂, types-list) satisfies the transitive case for k ≥ 2 then

types-list := types-list ∪
{
transk

}
else if (ϕ̂, types-list) satisfies the symmetric case then

types-list := types-list ∪ {symm}
end if

end if
if for some k,

{
symm, transk

}
⊆ types-list then

K(ψ̂) has the polynomial-size model property, and K(ψ̂)-SAT ∈ NP.
end if

end while

Figure 3: The Algorithm Horn-Classification

is an edge (α(y), α(x)) in T. If one of these cases applies, ϕ̂ is satisfied in every reflexive,
transitive, or symmetric tree, and hence recalling Theorem 2.3, it is not surprising that
these conditions do not lead to NP membership on their own—but in combination with
others, they very well might. In the variable types-list, the algorithm keeps a list of these
conditions encountered.

For the correctness proof, we first need to show that the choices that the algorithm
has to make always can be made: In the relevant situations, at least one of the “reflex-
ive,” “transitive,” or “symmetric” conditions occurs. We also need to prove that it actually
comes to a halt—the main argument is to show that only finitely many transk-conditions
are added to types-list, and no element is added twice. Building on Ladner’s results, proving
correctness of the PSPACE hard cases is trivial. The interesting statement of the classifica-
tion is that all logics not covered by these cases have an NP-complete satisfiability problem,
which is as low a complexity bound as we can hope for. We give an example for a logic
which Horn-Classification determines to have a satisfiability problem in NP.

As an example, let ϕ̂ be the universal Horn clause with prerequisite graph as shown in
Figure 2, with conc (ϕ̂) = (x, y), and let ψ̂ be the Horn formula having ϕ̂ as its only clause.
Horn-Classification starts with types-list = ∅, and in its first iteration checks if ϕ̂ is
satisfied in every strict tree. This is not the case, as Figure 4 shows (here, we simply marked
each node with the names of the vertices which are preimages of the homomorphism): This
is a homomorphic image of prereq (ϕ̂) as a line (in particular a strict tree), in which the
images of x and y are not connected with an edge. Thus ϕ̂ is not satisfied in this strict
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tree. However, if we map prereq (ϕ̂) homomorphically into a strict tree, then the vertices
between s and t must be “pairwise identified” like in Figure 4.

b, fs x, dx, d a, ea, e b, f c, yc, y t

Figure 4: Image as line

Therefore the transitive case is satisfied for
k = 3, and Horn-Classification adds trans3

to types-list. Next it checks if ϕ̂ is satisfied in ev-
ery

{
trans3

}
tree. This is not the case, and the

homomorphic image of prereq (ϕ̂) as a
{
trans3

}
line in Figure 5 (here we only included those edges added by the trans3 closure required for
the homomorphism) shows that ϕ̂ satisfies the homomorphic property in HNP mentioned
at the end of Section 4.2. This also clarifies what a “generalized line” is: At this point, the
variable types-list only contains the condition trans3, and hence a “generalized line” is the
3 transitive closure of a line. Therefore, K(ϕ̂)-SAT ∈ NP.

fs xd ae b cy t

Figure 5: Homomorphic image as
{
trans3

}
-line

This example
demonstrates that
in the run of
the algorithm, a
clause ϕ̂ can meet
different cases de-
pending on the

content of the variable types-list : In the situation that types-list = ∅, the clause ϕ̂ sat-
isfies the transitive case, but when types-list =

{
trans3

}
, this is no longer true.

5. Tree-like Models and PSPACE Upper Bounds

We now prove PSPACE upper bounds for many of our logics. The first step is to prove
a tree-like model property for the PSPACE-hard cases. This generalizes many standard
results, like the fact that K4-satisfiable formulas are always satisfiable on a transitive tree.
For a model M, let edges (M) denote the edges of the frame that M is based on.

Theorem 5.1. Let ψ̂ be a universal Horn formula satisfied on every types-list tree, where
there is no k such that types-list contains both transk and symm. Then every K(ψ̂)-satisfiable
modal formula is satisfiable in a model M such that M satisfies ψ̂ and there is a strict
tree T0 and a types-list tree T1 such that T0, T1, and M have the same set of worlds, and
edges (T0) ⊆ edges (M) ⊆ edges (T1) .

The theorem shows that in a certain way, the “converse” of the prerequisite that ψ̂ is
satisfied in every types-list tree is true as well: Not only is every types-list tree a model
in the logic K(ψ̂), but we can restrict ourselves to models which are “close” to types-list
trees. This is not a real “converse:” For example, if types-list contains only the symmetric
condition, there might be formulas satisfiable in K(ψ̂), but not in a symmetric tree. The
main idea of the proof is to start with a tree model for a satisfiable formula φ, and step by
step add enough edges to the model in a way which again gives a model for φ. Using this
theorem, we can construct a PSPACE decision algorithm for the involved logics similar in
spirit to Ladner’s decision procedure, with the additional difficulty that we need to ensure
that the properties demanded by the first-order formula are also met by the model. This is
a major obstacle: Recalling Proposition 4.1, we need to consider all homomorphisms from
the prerequisite graphs of the clauses in the formula ψ̂ into the (potentially exponential size)
model that we construct, at the same time may only keep a polynomial fragment of the
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model in memory. This can be done since we can restrict ourselves to connected components
of small diameter in a strict tree. The theorem gives a unified proof for showing that the
logics K,T, and B, among others, have satisfiability problems in PSPACE.

Theorem 5.2. Let ψ̂ be a universal Horn formula such that Horn-Classification does
not add any transk to types-list on input ψ̂. Then K(ψ̂)-SAT ∈ PSPACE.

There are some interesting applications of our results: Ladner proved that all normal
modal logics KL such that S4 is an extension of KL have a PSPACE-hard satisfiability
problem. Using Theorems 3.2 and 5.1, we show that his result is optimal in the sense that
every universal Horn logic which is a “proper extension” of S4 already has an NP-solvable
satisfiability problem.

Theorem 5.3. Let ψ̂ be a universal Horn formula such that ψ̂ implies ϕ̂refl ∧ ϕ̂trans. Then
either K(ψ̂) = S4, or K(ψ̂) has the polynomial-size model property and K(ψ̂)-SAT ∈ NP.

We further can show a PSPACE upper bound for all universal Horn logics which are
extensions of the logic T, and hence, from Theorem 3.2, conclude that these are all either
solvable in NP (and thus NP-complete if they are consistent), or PSPACE-complete.

Theorem 5.4. Let ψ̂ be a universal Horn formula such that ψ̂ implies ϕ̂refl. Then K(ψ̂)-
SAT ∈ PSPACE.

In a similar way, we can prove that all universal Horn logics which imply a variant of
symmetry give rise to a satisfiability problem in PSPACE. A noteworthy difference in the
prerequisites of Theorem 5.4 and Corollary 5.5 is that the former requires the reflexivity
condition to be implied by the formula ψ̂, while the latter only needs a “near symmetry”-
condition as detected by Horn-Classification.

Corollary 5.5. Let ψ̂ be a universal Horn formula such that Horn-Classification adds
symm to types-list on input ψ̂. Then K(ψ̂)-SAT ∈ PSPACE. In particular, any universal
Horn logic which is an extension of B has a satisfiability problem solvable in PSPACE.

6. Conclusion and Future Research

We analyzed the complexity of modal logics defined by universal Horn formulas, covering
many well-known logics. We showed that the non-trivial satisfiability problems for these
logics are either NP-complete or PSPACE-hard, and gave an easy criterion to recognize
these cases. Our results directly imply that (unless NP = PSPACE) such a logic has a
satisfiability problem in NP if and only if it has the polynomial-size model property. We
also demonstrated that a wide class of the considered logics has a satisfiability problem
solvable in PSPACE.

Open questions include determining complexity upper bounds for the satisfiability prob-
lems for all modal logics defined by universal Horn formulas. We strongly conjecture
that all of these are decidable, and consider it possible that all of these problems are in
PSPACE. A successful way to establish upper complexity bounds is the guarded frag-
ment [AvBN98, Grä99]. This does not seem to be applicable to our logics, since it cannot
be used for transitive logics, and we obtain PSPACE-upper bounds for all of our logics
except those involving a variant of transitivity.

The next major open challenges are generalizing our results to formulas not in the Horn
class, and allowing arbitrary quantification. Initial results show that even when considering
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only universal formulas over the frame language, undecidable logics appear. An interesting
enrichment of Horn clauses is to allow the equality relation. Preliminary results indicate
that Theorem 3.2 holds for this more general case as well.
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