
07011 � Abstracts Collection

Runtime Veri�cation

� Dagstuhl Seminar �

Bernd Finkbeiner1, Klaus Havelund2, Grigore Ro³u3 and Oleg Sokolsky4

1 Saarland University, Reactive Systems Group
Saarbrücken, Germany

finkbeiner@cs.uni-sb.de
2 NASA's Jet Propulsion Laboratory, Laboratory for Reliable Software

Pasadena, California, USA
Klaus.Havelund@jpl.nasa.gov

3 University of Illinois at Urbana-Champaign, Formal Systems Laboratory
Urbana, Illinois, USA
grosu@cs.uiuc.edu

4 University of Pennsylvania, Department of Computer and Information Science
Philadelphia, Pennsylvania, USA
sokolsky@saul.cis.upenn.edu

Abstract. From January 2�6 2007 the Dagstuhl Seminar 07011 `Run-

time Veri�cation' was held in the International Conference and Research
Center (IBFI), Schloss Dagstuhl. During the seminar, several partici-
pants presented their current research, and ongoing work and open prob-
lems were discussed. Abstracts of the presentations given during the sem-
inar have been put together in this paper. The �rst section is an executive
summary that describes the seminar topics in general.

Keywords. Program monitoring, dynamic program analysis, speci�-
cation languages and logics, concurrency errors, program instrumen-
tation, aspect-oriented programming, test oracles, fault protection, dy-
namic speci�cation learning, combining static and dynamic analysis.

07011 Executive Summary � Runtime Veri�cation

The 2007 Dagstuhl Seminar 07011 on Runtime Veri�cation1 was held
from Tuesday January 2 to Saturday January 6, 2007. Over the past
few years, runtime veri�cation has emerged as a focused subject
in program analysis that bridges the gap between the complexity-
haunted �eld of fully formal veri�cation methods and the ad-hoc �eld

1 The website for the seminar:
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=07011.

Dagstuhl Seminar Proceedings 07011
Runtime Veri�cation
http://drops.dagstuhl.de/opus/volltexte/2008/1376

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=07011

2 B. Finkbeiner, K. Havelund, G. Ro³u, O. Sokolsky

of testing. Other terms for this subject are: program monitoring, dy-
namic program analysis, and runtime analysis. Thirty researchers
participated in the seminar and discussed their recent work and re-
cent trends in runtime veri�cation.

Joint work of: Finkbeiner, Bernd; Havelund, Klaus; Ro³u, Grigore;
Sokolsky, Oleg

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1369

Combining Unit Test Coverage with Fault Injection

Cyrille Artho (National Institute of Informatics - Tokyo, J)

Testing application behavior in the presence of I/O failures is ex-
tremely di�cult. The resources used for testing usually work without
failure. Failures are usually not tested su�ciently. The Enforcer tool
identi�es such potential failures and automatically tests all relevant
outcomes of such actions. It combines the structure of unit tests,
coverage information, and fault injection. By taking advantage of a
unit test infrastructure, performance can be improved by orders of
magnitude compared to previous approaches.

Keywords: Software testing, fault injection, run-time veri�cation

On the Design and Semantics of Trace Monitoring Features

Pavel Avgustinov (Oxford University, GB)

A lot of recent research has focussed on trace monitoring � the
technique of observing program execution and triggering extra code
when certain conditions are met. This is particularly interesting from
the point of view of Runtime Veri�cation, since many error condi-
tions can be identi�ed by program traces containing them, and thus
a suitable monitor could perform the necessary instrumentation.

Tracematches are introduced as a particular example of a trace
monitoring feature. Their design is presented, discussing the di�erent
choices made. A formal semantics for matching a tracematch to a
program execution trace is presented; this is then re�ned into an
operational semantics that can guide an implementation. A brief

http://drops.dagstuhl.de/opus/volltexte/2008/1369

Runtime Veri�cation 3

comparison of the tracematch formalism to a "skipping semantics"
shows skipping adds no additional expressiveness. We conclude by
speculating on the possibility of a generic trace monitoring back-end.

Keywords: Trace monitoring, tracematches, runtime veri�cation, se-
mantics

Towards a Logical Framework for Tightly Coupled

Monitoring and Evolution of Software Components

Howard Barringer (Manchester University, GB)

We outline a logical modelling approach to describe evolvable com-
ponent systems. Here, an evolvable component system is built hier-
archically from components, and each component at each level of the
system may have an associated evolver process. The evolver's pur-
pose is to monitor and possibly change the associated component,
where evolutionary change may be determined purely internally from
observations made by the evolver, or may be stimulated from the out-
side. We model such systems in a revision-based �rst-order logical
framework in which the theory for the evolver is at a meta-level to
the theory for the component. This enables evolutionary change (i.e.
theory change) of the component to be induced by a state revision
of the evolver at the meta-level.

Keywords: Evolvable Software, Run-time Monitoring, Logical Mod-
elling, Revision Theory

Runtime Re�ection in a Nutshell

Andreas Bauer (TU München, D)

Reactive distributed systems have pervaded everyday life and ob-
jects, but often lack measures to ensure adequate behaviour in the
presence of unforeseen events or even errors at runtime. As inter-
actions and dependencies within distributed systems increase, the
problem of detecting failures which depend on the exact situation
and environment conditions they occur in grows. As a result, not
only the detection of failures is increasingly di�cult, but also the

4 B. Finkbeiner, K. Havelund, G. Ro³u, O. Sokolsky

di�erentiation between the symptoms of a fault, and the actual fault
itself, i. e., the cause of a problem.

We present a modular approach for analysing reactive distributed
systems at runtime, in that we provide a framework, the runtime
re�ection framework, for detecting failures as well as identifying their
causes. Our approach is based upon di�erent layers of analysis, each
of which is performed at runtime. The �rst layer performs monitoring
of observable system behaviour, and comparing it with a reference
behaviour often speci�ed in terms of an LTL property. Layer 2 then
tries to infer root causes for a detected discrepancy by performing a
logic-based diagnosis on the results of the monitors. Finally, if the
explanations are su�ciently detailed, a dedicated recon�guration can
be triggered in layer 3 of the framework to put the system back into
a well-de�ned state, or to safely shut down the system.

Keywords: Runtime veri�cation, LTL, diagnosis, recon�guration

A Staged Static Program Analysis to Improve the

Performance of Runtime Monitoring

Eric Bodden (McGill University - Montreal, CA)

In runtime monitoring a programmer speci�es a piece of code to ex-
ecute whe a trace of events occurs during program execution. Our
work is based on tracematches, an extension to AspectJ, which al-
lows programmers to specify traces via regular expressions with free
variables. In this paper we present a staged static analysis which
speeds up trace matching by reducing the required runtime instru-
mentation.

The �rst stage is a simple analysis that rules out entire trace-
matches, just based on the names of symbols. In the second stage, a
points-to analysis is used, along with a �ow-insensitive analysis that
eliminates instrumentation points with inconsistent variable bind-
ings. In the third stage the points-to analysis is combined with a
�ow-sensitive analysis that also takes into consideration the order in
which the symbols may execute.

To examine the e�ectiveness of each stage, we experimented with
a set of nine tracematches applied to the DaCapo benchmark suite.
We found that about 25% of the tracematch/benchmark combina-
tions had instrumentation overheads greater than 10%. In these cases

Runtime Veri�cation 5

the �rst two stages work well for certain classes of tracematches, of-
ten leading to signi�cant performance improvements. Somewhat sur-
prisingly, we found the third, �ow-sensitive, stage did not add any
improvements.

Keywords: Aspect-oriented programming, runtime monitoring, static
data�ow analysis

Aspect Mining ... And Then?

Silvia Breu (Cambridge University, GB)

As a program evolves it is easy to overlook that certain function-
ality is not or no longer properly encapsulated but scattered over
many methods. Aspect mining identi�es such cross-cutting concerns
in a program to help migrating it to an aspect-oriented design or to
simply understand a software system (better). However, the results
retrieved from applying di�erent aspect mining techniques can also
be useful for runtime veri�cation.

We will present two approaches and then envision how the re-
sults can be used for runtime veri�cation: DynAMiT (Dynamic As-
pect Mining Tool) analyses program traces re�ecting the runtime
behaviour of a system in search for recurring execution patterns of
method relations. HAM (History-based Aspect Mining) applies for-
mal concept analysis to a program's development history: method
calls added across many locations within transactions are likely to
be cross-cutting.

The identi�ed cross-cutting concerns (aspect candidates) can be
seen as rules with which, e.g., program execution traces have to com-
ply, or which can help to categorise program runs into good and bad
(faulty) runs. These rules can also be seen as some kind of speci�ca-
tion which future changes to the system have still to ful�l, without
requiring the programmer to actually write down the speci�cation
rules herself.

Keywords: Aspect mining, execution traces, formal concept analysis,
mining software repositories, rules

6 B. Finkbeiner, K. Havelund, G. Ro³u, O. Sokolsky

An Aspect Oriented Runtime Veri�cation System for C

Klaus Havelund (Jet Propulsion Laboratory, USA)

We present a framework, named RMOR, for monitoring the execu-
tion of C programs against a special variant of state machines that
have liveness states as well as safety states. A liveness state has to be
left eventually once entered, which is not the case for safety states.
In a �nite trace context this means before the end of a monitored
trace. The state machines are written in a lexical (non-graphical)
format in separate monitor �les, similar to the manner in which as-
pects are normally written separate from the program they apply to.
The state machine language has been inspired by the graphical state
machine language RCAT developed at NASA's Jet Propulsion Lab-
oratory, USA (Margaret Smith, 2006). Transitions between states
are labeled with abstract event names and Boolean expressions over
such. The abstract events are connected to code fragments in the
monitored program using a pointcut language inspired by aspect
oriented programming, speci�cally AspectJ. The system is imple-
mented in the C instrumentation and analysis package CIL (and
programmed in Ocaml), which turns out to be a convenient frame-
work for the analysis and transformation of C programs needed here.
The work can be extended to a full aspect oriented framework for C
combined with runtime veri�cation.

Keywords: Runtime veri�cation, state machines, aspect oriented pro-
gramming, C, CIL

Assertion-based Repair of Structurally Complex Data

Sarfraz Khurshid (Univ. of Texas at Austin, USA)

Programmers have long used assertions to characterize properties
of code. An assertion violation signals a corruption in the program
state. At such a state, it is standard to terminate the program, debug
it if possible, and re-execute it. We propose a new view: instead of
terminating the program, use the violated assertion as a basis of
repairing the state of the program and let it continue.

Runtime Veri�cation 7

We present a novel algorithm to repair structurally complex data.
Given a structure that violates an assertion that represents its in-
tegrity constraints, our algorithm performs a systematic search based
on symbolic execution to repair the structure, i.e., mutate it such
that the resulting structure satis�es the constraints and is similar to
the original one. Heuristics to prune search and minimize mutations
enable e�cient and e�ective repair.

Experiments using libraries and applications, such as a naming
architecture, a database engine, and a �le system, show that our pro-
totype e�ciently repairs complex structures�even those with thou-
sands of objects�while enabling systems to recover from potentially
crippling errors.

Keywords: Data structure repair, error recovery, runtime veri�cation

Timed Games and Generation of Testing Strategies for

Real-Time Systems Using UPPAAL Tiga.

Kim Gulstrand Larsen (Aalborg University, DK)

The talk will present the notion of timed game automata and the
extension of the real-time veri�cation tool UPPAAL for synthesizing
winning strategies for such games with respect to both safety and
liveness properties. It will be demonstrated how the tool can be used
for generating test strategies from timed I/O automata speci�cation
with uncontrollable output and timing uncertainties.

Monitoring Real-Time Properties

Martin Leucker (TU München, D)

This paper presents a construction for runtime monitors that check
real-time properties expressed in timed LTL (TLTL). Due to D'Souza's
results, TLTL can be considered a natural extension of LTL towards
real-time.

Moreover, a typical obstacle in runtime veri�cation is solved both
for untimed and timed formulae, in that standard models of linear
temporal logic are in�nite traces, whereas in runtime veri�cation
only �nite system behaviours are at hand.

8 B. Finkbeiner, K. Havelund, G. Ro³u, O. Sokolsky

Therefore, a 3-valued semantics (true, false, inconclusive) for LTL
and TLTL on �nite traces is de�ned that resembles the in�nite trace
semantics in a suitable and intuitive manner. Then, the paper de-
scribes how to construct, given a LTL/TLTL formula, a determin-
istic monitor with three output symbols that reads a �nite trace
and yields its according 3-valued LTL/TLTL semantics. Notably,
the monitor rejects a trace as early as possible, in that any minimal
bad pre�x results in false as a return value.

Keywords: Runtime Veri�cation, LTL on �nite traces, Realtime LTL

Joint work of: Bauer, Andreas; Leucker, Martin; Schallhart, Christian

Full Paper:

http://www4.in.tum.de/ leucker/Documents/Leucker/fsttcs06.pdf.gz

See also: Andreas Bauer, Martin Leucker, and Christian Schall-
hart. Monitoring of real-time properties. In Proceedings of the 26th
Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS'06), volume 4337 of Lecture Notes in
Computer Science, Kolkata, India, December 2006. Springer-Verlag.

Online Testing, Monitoring, and Emulation of Real-Time

Systems

Brian Nielsen (Aalborg University, DK)

We present a framework for online model-based testing for real-time
systems. Given a timed automata model of the system under test
and its assumed environment our techniques generates and executes
tests online and in real-time against the real system under test. A
key-point of the framework is explicit and separate description of
the environment assumptions. This view is supported from theory
to tool to applications.

We show how the explicit handling of environment assumptions
enables us to use the testing tool for monitoring (online as well as
o�ine) and for emulating real-time systems through a simple and
elegant recon�guration of the tool.

http://www4.in.tum.de/~leucker/Documents/Leucker/fsttcs06.pdf.gz

Runtime Veri�cation 9

Monitoring Partial Order Snapshots

Doron A. Peled (Bar-Ilan Univ. - Ramat-Gan, IL)

When monitoring a concurrent executing, events are registered ac-
cording to some arbitrary order. Still, one may want to check the
existence of snapshots (global states) according to some di�erent,
yet equivalent, ordering. In this paper we show an algorithm for
doing it. We extend the temporal logic LTL to reason about such
snapshots and present a model checking algorithm.

Keywords: LTL, monitoring concurrency, partial order execution

Lola: Runtime Monitoring of Synchronous Languages

Sriram Sankaranarayanan (NEC - Princeton, USA)

We present a speci�cation language and algorithms for the online
and o�ine monitoring of synchronous systems including circuits and
embedded systems. Such monitoring is useful not only for testing,
but also under actual deployment. The speci�cation language is sim-
ple and expressive; it can describe both correctness/failure assertions
along with interesting statistical measures that are useful for system
pro�ling and coverage analysis. The algorithm for online monitoring
of queries in this language follows a partial evaluation strategy: it
incrementally constructs output streams from input streams, while
maintaining a store of partially evaluated expressions for forward
references.

We identify a class of speci�cations, characterized syntactically,
for which the algorithm's memory requirement is independent of the
length of the input streams. Being able to bound memory require-
ments is especially important in online monitoring of large input
streams. We extend the concepts used in the online algorithm to
construct an e�cient o�ine monitoring algorithm for large traces.

We have implemented our algorithm and applied it to two indus-
trial systems, the PCI bus protocol and a memory controller. The
results demonstrate that our algorithms are practical and that our
speci�cation language is su�ciently expressive to handle speci�ca-
tions of interest to industry.

10 B. Finkbeiner, K. Havelund, G. Ro³u, O. Sokolsky

Keywords: Runtime Monitoring; Temporal Logics; Synchronous Lan-
guages

Joint work of: Sankaranarayanan, Sriram; D'Angelo, Ben; Sipma,
Henny; Finkbeiner, Bernd; Sanchez, Cesar; Manna, Zohar

Deadlock Avoidance in Distributed Systems

Henny Sipma (Stanford University, USA)

Deadlocks are a serious problem in concurrent systems. In central-
ized systems the three common methods to deal with deadlock are:
prevention, detection, and avoidance. With deadlock prevention, ab-
sence of deadlock is guaranteed statically, usually at the price of
severely restricting concurrency. With deadlock detection, it is as-
sumed that deadlocks can be detected and undone at runtime by,
for example, roll-back of transactions. This approach is common in
databases. Deadlock avoidance methods take a middle route: at run-
time requests for resources are processed by a protocol that checks
whether granting the resource is safe, that is, whether it will not
lead to a deadlock, by examining the resource state of all existing
processes and the needs of the new process.

In distributed real-time and embedded (DRE) systems, deadlock
avoidance is usually the only option. The price of prevention is too
high in terms of performance lost by unnecessarily restricting con-
currency. Detection is generally not possible in real-time systems,
because of potentially unbounded delays, and roll-back is problem-
atic for systems interacting with physical devices. Deadlock avoid-
ance methods developed for centralized systems, however, are not
applicable to distributed systems, because they rely on having ac-
cess to a global resource state, which is impractical in distributed
systems, because of the high communication overhead involved.

We have developed a deadlock avoidance approach for DRE sys-
tems that does not require any communication between components.
It is applicable to systems in which resources are allocated in a
nested manner. A concrete application is thread allocation in DRE
systems in which processes make two-way method calls to other
components, including nested upcalls, using a WaitOnConnection
policy. We present protocols that use static information about the

Runtime Veri�cation 11

global call graphs of the processes combined with runtime informa-
tion about the local resource state to decide whether granting a re-
source is safe. We start with a basic protocol that provides absence
of deadlock but does not guarantee liveness for individual processes,
followed by more sophisticated protocols that guarantee liveness and
provide distributed priority inheritance.

Joint work of: Sanchez, Cesar; Manna, Zohar; Gill, Chris; Subra-
monian, Venkita

Keywords: Deadlock avoidance, distributed systems, embedded sys-
tems

Monitoring Wireless Sensor Applications: Lessons from a

Case Study

Oleg Sokolsky (University of Pennsylvania, USA)

We present a case study that considers the application of runtime
veri�cation technology to a wireless sensor application. The case
study is performed using the SURGE TinyOS application for multi-
hop routing, which executes on the Avrora TinyOS simulator. We
discuss the problems we have encountered in the course of case study.
The problems include unclear correctness properties for wireless net-
work applications (indicating ad hoc development process) and in-
adequate tool support.

A wireless sensor network usually comprises of a collection of tiny
devices with built-in processors that can gather physical and envi-
ronment information such as temperature, light, sound, etc., and
communicate with one another over radio. Many wireless sensor net-
work applications sit on top of an operating system called TinyOS
and are mostly written in nesC, an extension of C that provides a
component-based programming paradigm. Most of wireless sensor
network applications are developed and tested on a simulator before
they are deployed in the environment because testing and debug-
ging directly on physical devices are very di�cult, especially when
the network consists of many nodes, and may not provide enough
information for debugging. A simulator usually produces detailed ex-
ecution information and can help �nd errors. However, even with the
simulator and nesC, the current state of development tools for wire-
less sensor network still requires very low-level programming, which

12 B. Finkbeiner, K. Havelund, G. Ro³u, O. Sokolsky

makes it hard for the developers to maintain a high-level view of the
system operation.

During the validation stage, lack of sophisticated debugging tools
for sensor networks makes it di�cult to make the connection between
a high-level functional or performance requirement and a particular
aspect of system implementation.

This paper investigates a high-level approach to examine execu-
tion data from a simulator and analyze it using runtime veri�cation.
The technique 1) identi�es and formally speci�es high-level require-
ments for the system under development, 2) monitors a distributed
wireless sensor network application using data provided by the sim-
ulator, and 3) checks for timing and dynamic properties to gain
understanding of the relevant behaviors of wireless sensor nodes and
to provide a systematic approach in �nding bugs and errors. A par-
ticular runtime veri�cation used in this paper is MaC. MaC provides
speci�cation languages capable of expressing functional, timing, and
probabilistic properties to specify requirements or patterns of errors.
Properties can, for example, examine periodic behaviors or identify
a faulty node.

MaC then monitors and checks a wireless sensor network applica-
tion against its speci�cation by observing data produced by a simu-
lator.

The motivation for applying the monitoring and checking tech-
nique to check wireless sensor network applications is threefold: 1)
raise the development level for wireless sensor network, 2) provide
a mechanism for understanding high-level behaviors of the system
in terms of low-level observation, and 3) provide a tool based on
the acceptance of the state of the art development tool for sensor
networks.

Keywords: Runtime veri�cation, wireless sensor network, Avrora
simulator

Joint work of: Sammapun, Usa; Regehr, John; Lee, Insup; Sokolsky,
Oleg

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1371

http://drops.dagstuhl.de/opus/volltexte/2008/1371

Runtime Veri�cation 13

Goldilocks: A Race and Transaction-Aware Runtime for

Java

Serdar Tasiran (Koc University, TR)

Data races often result in unexpected and erroneous behavior. In
addition to causing data corruption and possibly program crash,
the presence of data races complicates the semantics of an execution
which might no longer be sequentially consistent. Motivated by these
observations, we have designed and implemented a Java runtime sys-
tem that monitors program executions and throws a DataRaceEx-
ception when a data race is about to occur. Analogous to other run-
time exceptions, the DataRaceException provides two key bene�ts.
First, accesses causing race conditions are interrupted and handled
before they cause errors that may be di�cult to diagnose later. Sec-
ond, if no DataRaceException is thrown in an execution, it is guar-
anteed to be sequentially consistent. This strong guarantee helps to
rule out many concurrency-related possibilities as the cause of erro-
neous behavior.

When a DataRaceException is caught, the operation, thread, or
program causing it can be terminated gracefully. Alternatively, the
DataRaceException can serve as a con�ict-detection mechanism in
optimistic uses of concurrency.

We start with the de�nition of data-race-free executions in the
Java memory model. We generalize this de�nition to executions that
use transactions, in addition to locks and volatile variables, for syn-
chronization. We present a precise and e�cient algorithm for dynam-
ically verifying that an execution is free of data races. This algorithm
generalizes the Goldilocks algorithm for data-race detection by han-
dling transactions and providing the ability to distinguish between
read and write accesses. We have implemented our algorithm and
the DataRaceException in the Ka�e Java Virtual Machine. We have
evaluated our system on a variety of publicly available Java bench-
marks and a few microbenchmarks that combine lock-based and
transaction-based synchronization. Our experiments indicate that
our implementation has reasonable overhead. Therefore, we believe
that the DataRaceException is a viable mechanism to enforce the
safety of executions of multithreaded Java programs.

Joint work of: Tasiran, Serdar; Elmas, Tayfun; Qadeer, Shaz

14 B. Finkbeiner, K. Havelund, G. Ro³u, O. Sokolsky

Monitoring with Lower Runtime Overheads

Julian Tibble (Oxford University, GB)

A trace monitor observes the sequence of events in the execution of
a program; when the sequence matches some speci�ed temporal pat-
tern, additional code is triggered. Runtime veri�cation of temporal
properties is the major application of such monitors.

One key feature of systems for trace monitoring is the ability to
write temporal patterns containing variables, which range over ob-
jects in the observed program. This allows the programmer to write
speci�cations about the intended behaviour of cliques of interacting
objects.

Generating e�cient instrumentation from patterns containing vari-
ables involves two major problems in designing the data structures
that keep track of the matching state: avoiding memory leaks (that
cause the observed program to use much more memory than it oth-
erwise would), and allowing fast access to relevant state to prevent
the instrumentation from making the observed program prohibitively
slow. This talk demonstrates solutions to these problems that have
been implemented in the tracematch system - part of the Aspect-
Bench Compiler.

Keywords: Trace monitoring, performance, optimisation

Pex, a Framework for Systematic Runtime Veri�cation of

.Net Programs

Nikolai Tillmann (Microsoft Research, USA)

Pex is a framework enabling runtime veri�cation and white box test-
ing of .Net programs. Pex generates test cases in a feedback loop;
it runs a test case while monitoring its execution. Pex learns from
recorded, detailed execution traces and derives additional test cases
using a constraint solver. The result is a minimal test suite with max-
imal code coverage. Pex is integrated into Visual Studio and other
unit test frameworks. Pex also contains a dynamic property checker,
and a module to infer likely intended program behavior.

While only recently released internally within Microsoft, Pex has
already found several interesting bugs in the shipped code.

Runtime Veri�cation 15

Monitoring, Fault Diagnosis and Testing Real-time

Systems using Analog and Digital Clocks

Stavros Tripakis (Cadence Labs - Berkeley, USA)

We give an overview of known methods for monitoring, fault diag-
nosis and testing problems for real-time systems using timed au-
tomata as the main model. We present techniques for constructing
monitors/diagnosers/testers with analog or digital clocks. We list a
number of open problems in the �eld.
Keywords: Monitoring, fault diagnosis, testing, timed automata

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1370

Taming Interface Speci�cations

Lenore Zuck (Univ. of Illinois - Chicago, USA)

Software is often being assembled using third-party components where
the developers have little knowledge of, and even less control over, the
internals of the components comprising the overall system. One ob-
stacle to composing agents is that current formal methods are mainly
concerned with �closed� systems that are built from the ground up.
Such systems are fully under the control of the user. Hence, prob-
lems arising from ill-speci�ed components can be resolved by a close
inspection of the systems. When composing systems using �o�-the-
shelf� components, this is often no longer the case.

The talk addresses the problem of under-speci�cation, where an
o�-the-shelf component does only what it claims to do, however, it
claims more behaviors than it actually has and that one wishes for,
some of which may render it useles. Given such an under-speci�ed
module, we propose a method to automatically synthesize some
safety properties from it, that would tame its "bad" behaviors. The
advantage of restricting to safety properties is that they are moni-
torable. The safety properties are derived using an automata-theoretic
approach. When restricting to omega-regular langauges, there is no
maximal safety property. We construct an increasing sequence of
safety properties. We also show how to construct an in�nite-state
automata that can capture any safety property that is contained in
the original speci�cations.
Joint work of: Sistal, Prasad; Zuck, Lenore; Ste�en, Bernhard; Mar-
garia, Tiziana

http://drops.dagstuhl.de/opus/volltexte/2008/1370

	07011 -- Abstracts Collection Runtime Verification --- Dagstuhl Seminar ---
	Bernd Finkbeiner, Klaus Havelund, Grigore Rosu and Oleg Sokolsky

