Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH scholarly article en Chepoi, Victor; Seston, Morgan http://www.dagstuhl.de/lipics License
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-18167
URL:

;

An Approximation Algorithm for l_infinity Fitting Robinson Structures to Distances

pdf-format:


Abstract

In this paper, we present a factor 16 approximation algorithm for the following NP-hard distance fitting problem: given a finite set $X$ and a distance $d$ on $X$, find a Robinsonian distance $d_R$ on $X$ minimizing the $l_{\infty}$-error $||d-d_R||_{\infty}=\mbox{max}_{x,y\in X}\{ |d(x,y)-d_R(x,y)|\}.$ A distance $d_R$ on a finite set $X$ is Robinsonian if its matrix can be symmetrically permuted so that its elements do not decrease when moving away from the main diagonalalong any row or column. Robinsonian distances generalize ultrametrics, line distances and occur in the seriation problems and in classification.

BibTeX - Entry

@InProceedings{chepoi_et_al:LIPIcs:2009:1816,
  author =	{Victor Chepoi and Morgan Seston},
  title =	{{An Approximation Algorithm for l_infinity Fitting Robinson Structures to Distances}},
  booktitle =	{26th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{265--276},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-09-5},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{3},
  editor =	{Susanne Albers and Jean-Yves Marion},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2009/1816},
  URN =		{urn:nbn:de:0030-drops-18167},
  doi =		{http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1816},
  annote =	{Keywords: Robinsonian dissimilarity, Approximation algorithm, Fitting problem}
}

Keywords: Robinsonian dissimilarity, Approximation algorithm, Fitting problem
Seminar: 26th International Symposium on Theoretical Aspects of Computer Science
Issue date: 2009
Date of publication: 2009


DROPS-Home | Fulltext Search | Imprint Published by LZI