

Dagstuhl Seminar 09021: Software Service Engineering
Executive Summary

Willem-Jan van den Heuvel1, Olaf Zimmermann2, Frank Leymann3, Tony Shan4

1 European Research Institute on Services Science (ERISS), Tilburg University,
Warandelaan 2, 5000 LE, Tilburg, The Netherlands, wjheuvel@uvt.nl

2 IBM Research GmbH,
Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

olz@zurich.ibm.com
3 Universität Stuttgart, Institute of Architecture of Application Systems,

Universitätsstraße 38, 70569 Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

4 SOACP (www.soacp.com),
708-1155 West Pender Vancouver, BC, Canada V6E 2P4,

 tonycshan@gmail.com

Abstract. Service-Oriented Architecture (SOA) constitutes an important,
standards-based and technology-independent distributed computing paradigm
and architectural style for discovering, binding, assembling, and publishing
loosely-coupled and network-available software services. With SOA-enabled
applications operating in highly complex, distributed, and heterogeneous
execution environments, SOA practitioners encounter the limits of traditional
software engineering. In this Dagstuhl seminar, we have discussed and explored
the fundamental tenets underpinning the development and maintenance of SOA
systems. As a result of our discussions, we position software service
engineering as an evolving and converging discipline that embraces the open
world assumption. Software service engineering entails a departure from
traditional software engineering disciplines such as component-based
development, supplementing them with techniques and patterns tailored to
service enablement, composition, and management.

Keywords: Service engineering, software engineering, service-oriented
computing, service-oriented analysis and design, SOA, systems engineering,
Web engineering.

1 Seminar Topics and Objectives

Service-oriented architecture (SOA) [11] as an architectural style based on common
principles and patterns such as Business Process Choreography and Enterprise
Service Bus (ESB) allows service engineers to effectively (re-)organize and (re-)
deploy executable business processes, functional components, and information assets
as business-aligned and loosely-coupled software services. SOA is unique in that it
aims at unifying various related, yet up to now largely isolated domains such as

Dagstuhl Seminar Proceedings 09021
Software Service Engineering
http://drops.dagstuhl.de/opus/volltexte/2009/2041

2

business process management, distributed computing, enterprise application
integration, software architecture, and systems management.

Given the loosely-coupled, heterogeneous, and dispersed nature of SOA, several of
the key assumptions underlying traditional approaches to software engineering are
being challenged; consequently, conventional software engineering methods and tools
have to be carefully reevaluated and possibly extended to be applicable to analysis,
design, construction, and delivery of software services. Due to the continuing
evolution of SOA, SOA research so far has been mostly focused on certain parts of
the service lifecycle, such as runtime service infrastructure and middleware. There is
a lack of comprehensive methods and tools consistently supporting all phases of
software service engineering ranging from analysis to implementation and evolution.
Such methods and tools must be grounded both in scientific foundations and in
industrial best practices.

It was the overall goal of this seminar to assess existing methods, techniques,
heuristics, and practices from related fields such as requirements engineering,
software engineering, Object-Oriented Analysis and Design (OOAD), Component-
Based Development (CBD), and method engineering to harness SOA methods and
tools and to define a road map for the creation of a unified software service
engineering method. More precisely, the first objective of the workshop was to
understand assumptions and impact of emerging runtime platform models on the
engineering process, e.g., SOA principles and patterns such as loose coupling and
programming without a call stack, ESB and service composition, Software as a
Service (SaaS) and cloud computing, Web 2.0 and mashups, as well as mass
programming.

Based on the results of this analysis activity, the second objective of the workshop
was to define distinguishing characteristics of Software Service Engineering (SSE)
and to assess the state of the art in SOA and service design methods.

The third and last goal was to identify focus areas for future work and a roadmap
for SSE. In particular, the following three questions were addressed: Are new methods
and tools required? How can the existing body of knowledge in software engineering
and SOA design be extended? Is method unification a la Unified Modeling Language
(UML) [16] and Unified Process (UP) [12] desirable and feasible?

2 Seminar Organization

Participating communities. With this seminar we brought together researchers and
practitioners from various industrial domains and research areas that work in the
emerging field of software service engineering. In particular, we established linkages
and enduring collaborations between the following three communities that operated in
isolation before:

1. Requirements and software engineering including patterns.
2. SOA middleware and platform standards.
3. Industrial adopters of SOA.

3

41 participants from 10 countries attended the seminar; industry participation was
in the range of 40% to 60% (depending on how industrial research labs are counted).
Areas of interest and expertise varied from business process modeling to SOA design
principles, patterns, and platform, but also method engineering, software architecture,
testing, legacy system analysis, semantic Web, and software product lines.

Themes. To realize the seminar’s objectives, and to streamline presentations and
discussions, the seminar was organized around the following themes:

1. What are the novelties in Software Service Engineering (SSE)?
2. Top-down SSE starting from business architecture and mapping to

Information Technology (IT) architecture.
3. Bottom-up SSE service composition and service enablement of existing

(legacy) applications.
4. Recurring design issues in meet-in-the-middle service realization and

patterns for them.

Agenda. We organized this Dagstuhl seminar into three general and four topic-
specific sessions that used various formats. The two and a half seminar days
comprised a series of interactive presentations as well as plenary discussions and
breakout groups. They were accompanied by an open space session [9] and two
panels held in the evenings. The panels focused on the impact of cloud computing on
SSE and on SOA patterns, respectively.

Day 1 was devoted to introduce the topic and to establish a joint understanding of
SSE aspects such as process, notation, platform, principles, patterns, and tools. Two
general sessions featured four widely recognized speakers from the SOA platform,
pattern, and practitioner communities. The open space session gave all participants
the opportunity to propose additional topics to be discussed or presented in breakouts.
Seven sessions were held; topics included “how to model services in UML”, “from
enterprise architecture to SOA”, “the role of domain-specific languages in SSE”, and
“RESTful service composition”.

Day 2 was devoted to finding answers to the questions we had posted for the
seminar objectives (see Section 1). One session per topic was held (see beginning of
this section): each session comprised two presentations and a 30 minute discussion
slot. Session chairs and scribes captured the results in the seminar wiki.

Day 3 had the objective to recapitulate and reflect upon the sessions of the previous
two days, working towards a research roadmap or manifesto. To do so, we first
discussed the format in the plenum and jointly decided to divide into two moderated
breakout groups that both investigated defining characteristics of SSE. The results of
the breakout sessions were presented in the plenum (see next section). After that, a
particular form of crowd and voting game was facilitated to give all participants the
opportunity to propose their number one challenge for SSE and come up with a
ranking that was not dictated by any of the organizers, session facilitators, or other
opinion leaders. This voting game turned out to be highly efficient; the technique
scaled well and ensures that less vocal participants could provide input to the decision
making. In the following Section 3 we present the results.

4

3 Seminar Results

We structure this section of the seminar report into initial analysis, conclusions
regarding the four SSE topics from Section 2, and a synthesis of defining
characteristics and related challenges in industry and academia.

3.1 Initial Analysis (Day 1)

SSE must avoid the pitfalls of an uncontrollable maze of services and provide a solid
foundation for service development. It must allow for professional, highly distributed
peer development and service management. The following general issues emerged:

1. Support for opportunistic SSE projects (a.k.a. situational development).
2. Bridge a modeling chasm: design/development and delivery/execution.
3. Bridge another analysis and modeling chasm to find a top-level model,

analysis, develop, deliver SSE process loop that integrates a {service, policy,
data, message, user} artifact set and supports the iterative and incremental
decomposition and refinement of such artifacts.

4. Existing programming models allow constructing service-oriented solutions,
but they do so in a sub-optimal way both from a build time developer
experience and runtime quality attribute point of view.

Existing assets from the industry include Service Lifecycle Process [18], Service-
Oriented Modeling Framework [3], and Mainstream SOA Methodology (MSOAM)
 [6]. Service-Oriented Modeling and Architecture (SOMA) [1] is the IBM
methodology for service-oriented analysis and design. Vendors such as SAP and
BEA, and firms providing analysis and design consulting services, e.g., Cap Gemini,
sd&m [5], and Everwhere-CBDI [8] provide additional methodologies. Some of the
existing assets from the industry are proprietary and for company internal use, or are
only partially published. In academia, we have witnessed proposals such as Service
Development Lifecycle Methodology (SDLM) [15], Service Centric System
Engineering (SECSE) Methodology [17], and Architectural Framework for Service
Definition and Realization (SOAF) [7]. Some of the assets from academia have not
been proven in practice yet.

Open space session summaries. The open space sessions were summarized in the
seminar wiki; the main results served as input to the general session on day 3 which
produced the SSE characteristics and challenges we will present in Section 3.3.

3.2 Presentations and Discussions (Day 2)

In the following, we will summarize the key conclusions from the presentations and
discussions revolving around the seminar’s four themes that were introduced in

5

Section 2. The presentations themselves are available for download from the website
of the seminar (http://www.dagstuhl.de/09021).

1. What is new in Software Service Engineering (SSE), including programming
without a call stack? While the foundations (i.e., models, techniques, and concepts)
of SSE are available and relatively mature, they unfortunately fall short in designing
service-based systems that operate in open, dynamic, and uncontrolled environments.
Therefore, SSE involves combining various programming models and development
paradigms, including event-driven and asynchronous programming, declarative
programming, process modeling, and protocol design.

2. Top-down SSE starting from business architecture and mapping to Information
Technology (IT) architecture. Currently, many uncorrelated approaches and tools are
available for developing SOAs on the one hand and for facilitating business (process)
modeling on the other hand. It remains a challenge, however, how these methods and
supporting toolsets can be seamlessly integrated to formulate a holistic approach, so
that business-aligned software services can be identified, specified, realized, tested,
deployed, managed, and evolved in a consistent and standardized fashion.

3. Bottom-up SSE service composition and service enablement of existing (legacy)
applications. We are quickly moving from the current Internet of services to the
ubiquitous Internet of services and things, which combines software services with
mobile devices, sensor networks, and social networks. This leads towards the concept
of services everywhere. In this novel service engineering concept, software services
residing on the Internet are fuelled by various very heterogeneous building blocks.
These building blocks include mashups, complex cloud computing stacks, and already
existing external services. Clearly, the service everywhere concept is strongly
influenced by social computing, service-oriented computing, and cloud computing.
Already existing enterprise systems will continue to provide important sources for
services; there is a growing need for integrated approaches that cater for
redeployment of legacy resources as services on clouds.

4. Architectural decision models and tools for meet-in-the-middle service
realization. In this session, we investigated how service design knowledge can be
made reusable and how to identify, make, and enforce architectural decisions during
SOA design. Pattern languages can go a long way in supporting SSE practitioners;
however, they do not provide everything that is required to make tacit software
service design rationale explicit. Architectural decision models complement pattern
languages with domain-specific guidance and technology and asset-level refinements.

3.3 Seminar Result Synthesis (Day 3)

We distilled the observations from day 1 and the conclusions from day 2 into a set of
defining SSE tenets, which fall in three complementary dimensions: architectural
(platform), process, and engineering (see Figure 1).

6

Fig. 1. Dimensions of SSE Tenets

 The architectural (platform) tenets were compiled as follows:1

• Service is the key design and runtime concept; a service is described by its
contract.

• The services described in a contract are provided by endpoints (providers)
and invoked by service requesters.

• Composition of services is facilitated by the service contract.
• Services communicate via document exchange using messaging technology.
• The service communication leverages protocols, which may support request

coordination and support for conversations.
• Service virtualization supports location transparency.

From a process perspective, we identified the following process tenets:

• Scoping (application boundaries)/context. Services should be designed in
such a way that they routinely support business processes. This implies a
scoping of processes so that their supporting software services are logically
cohesive and loosely coupled, minimizing message, protocol, and context
dependencies.

• Lifecycle, ownership, and versioning. The objective of SOA is to manage the
lifecycle of a service starting from business goals over service definition,
through deployment, execution, measurement, analysis, change, and
redeployment. Specifically, during their life services are subject to two broad
classes of changes: low-impact changes versus intrusive changes. Intrusive
changes include operational behavior changes and policy-induced changes,
while low-impact changes demand a comprehensive service versioning
strategy that may cater for forward and backward compatibility. A key issue
regarding version management entails ownership of service data, logic, and
transactions, especially in the context of processes that cross organizational
boundaries.

1 The tenets can be expressed as principles or patterns (or both). At present, there is no industry

consensus on these principles and patterns; each book author follows his/her own approach.

7

• Reuse and variability. To cater for reuse in various process contexts, services
should be designed as differentiated services that allow for multiple levels of
service, depending on service request(er). Functional variability may also be
built in by parameterization, delegation, or specialization/generalization.

• Governance and roles. Successful implementation and management of
service-enabled processes is directly dependent on a strict service
governance framework that clearly defines chains of responsibility,
measurements to gauge efficacy, and controls to check on compliance.

Finally, the following seven clusters of engineering tenets were established:

1. Technical federation. SSE has to cater for service-enabled software applications
that are highly distributed in nature with many asynchronous interactions between
services. In addition, SSE has to deal with services that may be deployed on various
runtime platforms, including mobile devices, computing clouds, and legacy systems,
and have been developed in various programming paradigms – including, but not
limited to, OOAD and CBD.

2. Dynamism. A key tenet of SSE is dynamism regarding both the services that are
aggregated into dynamic service compositions via late binding – possibly into agile
service networks – as well as the highly volatile context in which they operate.
Firstly, dynamism implies that SSE methods, techniques, and tools have to deal with
emergent properties and behavior of complex service networks, which may in fact be
comprised of thousands of independent – yet cooperating – services. In fact, emergent
behaviors pertain to system-level issues such as performance and security as well as
to business-level issues including profitability, return-on-investment, and indices of
value-creation. This signifies that software applications that have been designed in
accordance with SSE typically exhibit unpredictable, non-linear and non-deterministic
behavior. Dynamism puts requirements on virtually all layers of the typical SOA
stack, ranging from the network layer (often SOAP messages transmitted over
synchronous HTTP or asynchronous messaging protocols) to the composition layer
(e.g., BPEL). Late binding and loose coupling constitute two key principles for
increasing the adaptability of service applications and for accommodating dynamic
(re-)composition as well as (re-)configuration of services in a network. In addition,
SSE has to accommodate various styles of composition, fostering user-friendly
enterprise service mash-ups as well as heavy-weight compositions of industry-
strength enterprise applications by service development professionals.

3. Organizational federation. SSE should be shaped around the doctrine stating that
development and maintenance (operations) be typically achieved in highly distributed
organizational environments, involving multiple departments, units, enterprises, and
governmental organizations. Typically, development and maintenance of applications
will be a collaborative effort, implying that in fact design, coding, deployment etc.
will occur in networks of collaborative service clients and providers. Organizational
federation requires sound distributed governance policies and mechanisms,
accommodating individual needs of various stakeholders and constraints stemming
from organization-specific policies or governmental rules and legislations.
Organizational federation may adopt a range of coordination mechanisms, ranging

8

from a classical central control system to a decentralized control approach, relying on
mechanisms such as service markets and contracts.

4. Boundaries. Services developed with SSE methods or tools have to be endowed
with clear and explicit boundaries. In particular, SSE has to respect service contracts
that capture goals and constraints (pre- and post-conditions and invariants),
capitalizing Bertrand Meyer’s classical design-by-contract principle [13]. An intrinsic
part of the service contract entails the service interface that clearly specifies the
messages a service understands and the service endpoints that are available. Enriching
the service interfaces with additional semantic information such as scenarios or
behaviors allows a more robust and stable service composition. In addition, given the
highly distributed and volatile nature of service applications, service contracts have to
be aligned with service level agreements between service clients and providers.

5. Heterogeneity. Any SSE concept, method, and tool have to embrace heterogeneity
of the service application and the context in which it operates. Just like dynamism,
heterogeneity impacts all phases of the service development lifecycle, posing
restrictions on how software service systems can be designed, developed, deployed,
and evolved over time. Note that in contrast to before, no assumptions can be made
about the system’s programming, execution, and management context before, during
and after deployment.

6. Business-IT alignment. SSE embraces a new style of development assuming that
software service applications can be systemically and routinely (re-)mapped to the
business processes they realize, and vice versa. This in fact points towards the need
for unification of concepts, models, methods, and techniques from Business Process
Management (BPM) to ensure that these applications do not only meet system-level
Quality of Service (QoS) criteria, but also conform to given process-level business
performance indicators.

7. Holistic approach. A key distinguishing “meta” characteristic of SSE refers to its
holistic nature. More than ever before, SSE demands an interdisciplinary approach
towards the analysis and rationalization of business processes, design of supporting
software service systems, their realization, deployment, provisioning, monitoring, and
adaptation. This implies that SSE concepts, models, methods, and tools be integrated
and unified, adhering to open standards and offering integrated support for multiple
stakeholders.

Research challenges. To derive research and industry development challenges from
the defining tenets and characteristics, a crowd-sourcing and -scoring game was
conducted. First, the participants were asked to briefly answer the question:

What is the most important challenge of SSE?

32 participants submitted an answer. Next, these unedited answers served as input
to a scoring game without any upfront discussion clarification; duplicates were not
eliminated. Pairs of answers were scored against each other in four iterations (the
pairs were built randomly; the facilitator of the game only was responsible for the
time management). The maximum score per iteration was five points. Hence, the

9

highest possible score was 20 points. The result of this sourcing and scoring game is
the following consolidated list of answers, ordered by points scored:

1. Address the ‘open-world’ assumption: unforeseen clients, execution context,
 usage (16 points)
2. Bridging a modeling chasm: design/develop and delivery/execution (15)
3. ‘Open world assumption’: uncertainty (15)
4. IT-business alignment, adaptability (15)
5. Alignment of technical and business engineering for services (14)
6. New models and abstractions to represent and handle SOA dynamics (14)
7. To develop software without knowing in which context it is used (14)
8. Programming models and runtime integration (14)
9. Service resilience, system level (robustness) (13)
10. The mapping from requirements to services fulfilling them (13)
11. How to architect SOA with respect to the heterogeneous nature; dealing with

 heterogeneity (13)
12. Making the leap from business service to the right technical service design (11)
13. Alignment of business and technical SSE level (12)
14. Composability (11)
15. Testing (11)

Not surprisingly, many of these research challenges are closely related to the SSE
tenets. Table 1 loosely correlates the 15 research challenges to the engineering tenets.
Note that engineering tenet 7 (holistic approach) pertains to all research challenges
and is therefore not included in Table 1.

Table 1. Correlation of SSE Tenets and Challenges

SSE Tenet Description Challenge ID
1 Technical federation 7, 8, 9, 14, 15
2 Dynamism (virtualization) 1, 3, 6, 15
3 Organizational federation 1, 3, 7
4 Explicit boundaries (contracts) 10, 12
5 Heterogeneity 11
6 Business-IT alignment 2, 4, 5, 13, 15

From this informal cross-correlation we may carefully draw first conclusions. It
should be noted that the level of granularity of the research varies; some challenges
are very generic in nature – including challenge 1 and 3 – while other challenges
address specific problems such as service composability and testing.

The number of challenges correlated to an SSE tenet indicates how the participants
of the game perceive the tenet. The same holds true for the score of the challenge,
which is expressed by the challenge ID: a small number indicates high importance.

The research challenges relating to tenet “technical federation” include the design
of service-based applications without any knowledge about the context in which these
applications will be executed. This research challenge is critical in open and agile
service networks, with many interactions between service participants, which are not
known at design time. In addition, there is a need for novel approaches to integrate
programming models and platforms while processes in service networks are executed.

10

The high level of change in service networks also demands services to be robust and
reliable. Challenge 8 points out that the traditional boundary between application
development and integration on the one hand and application maintenance and change
management on the other hand becomes blurred in SSE. In response, continuous
integration, a term from agile development, may be projected into the operations and
maintenance phase of the service development lifecycle to support continuous
evolution. Backward and forward compatibility issues have to be addressed here.

The ‘open world assumption’ makes the current architecting methods obsolete to a
large extent, as they are largely based upon a predefined organizational and technical
context. Some flexibility is taken into account, but not nearly as much as required
when designing under the ‘open world assumption’. Furthermore, the traditional
architecture-business cycle that expresses the bidirectional influence between the
technical system and the business organization cannot be managed using traditional
architecting methods in SSE because of the high dynamism and heterogeneity put
forward by the SOA style. Therefore the architecting dimension of SSE needs to be
thoroughly re-considered, possibly leading to a new architecting paradigm.
Architecture knowledge management with its focus on architectural decisions and
their rationale is an emerging sub-discipline of software architecture that we expect to
contribute solutions to this new architecting paradigm [20].

Because of the ‘open world assumption’ and the dynamisms of service-based
applications, traditional test methods for system development and deployment are no
longer sufficient: As not all usage contexts and configurations can be predetermined
in pre-deployment tests setups, tests have to be extended into the operation and
maintenance of these applications. Contract-oriented build-in tests, active online tests,
and runtime auditors and supervisors are first developments in this direction.

We investigated the possibility to come up with an “SSE manifesto”, but
concluded that such an undertaking would be premature and bound to fail at this
stage. Initial ideas for statements in such manifesto were to value sustainable benefits
over tactical gains, to prioritize adaptability over reusability, to prefer business-driven
change to technology-driven change, to favor rapid team formation over formal
structures, and to favor meet-in-the-middle service design techniques over dogmatic
unidirectionality.

4 Conclusion and Outlook

SOA-enabled applications can be developed and evolved by applying aging software
engineering paradigms, notably CBD and OO; however, the key advantages of SOA
cannot be fully exploited when doing so. The main reason for this is that conventional
software engineering paradigms typically adopt the closed world assumption,
hypothesizing that applications have clear boundaries, and will be executed in fully
controlled, relatively homogeneous, predictable and stable execution environments.
This thesis is backed up by conclusions drawn from a decade-to-decade analysis of
software engineering by Barry Boehm [3] [4].

Instead, we claim that for SOA to be applied successfully, SSE has to embrace the
‘open-world assumption’, in which software services are composed in agile and

11

highly fluid service networks – that are in fact systems of software-intensive systems
– operating in highly complex, distributed, and heterogeneous execution
environments. In addition, the service networks that are designed based on this
assumption have to be continuously (re-)aligned with business processes, and vice
versa. Adoption of the ‘open-world assumption’ is reflected in the three types of SSE
tenets: architecture, process, and engineering.

Based on the research reported, we came up with an initial definition of SSE as:

Software service engineering entails the science and application of concepts,
models, methods, and tools to define, design, develop/source, integrate, test, deploy,

provision, operate, and evolve business-aligned and SOA-enabled software systems in
a disciplined and routinely manner.

Clearly, SSE will benefit from timeless generic principles and lessons learned from
its elderly parent software engineering; however, we herein argue that aging
computing model specific principles and practices, e.g., distributed component
technology, are in clear need for revision given the specific nature of SOA.

In our view, SSE will be based on standards and will be frequently realized with
Web services. Specifications such as SOAP, WSDL, BPEL, WS-Policy, and WS-
Agreement already constitute the first step to realize the technical aspects in some of
the SSE tenets, including engineering tenets 1, 2, 4, and 5. Other architectural styles
and technology paradigms can also be used to realize software services. However,
further research is required to more effectively satisfy the open-world assumption.
This has also been reflected in the outcome of the brainstorm on the key open
research challenges.

The results of this seminar are core results in nature. During the seminar it became
clear that the discipline of software service engineering is still in its embryonic phase,
and further work is required in several directions. Firstly, the list of tenets has to be
further explored, validated, and potentially refined or expanded. The presented list is
derived from a literature survey, as well as expertise and experience from real-world
SOA projects and discussions with leading industry experts and renowned researchers
in the field of software engineering, software patterns and SOA; however, more case
studies have to be analyzed critically to further validate this initial list.

As a follow-up activity, we have published the results of this seminar in an ICSE
workshop paper [19]. The workshop paper extends the discussion in this executive
summary and provides an example which illustrates the difference between SSE/SOA
and traditional software engineering disciplines.

Acknowledgment

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

12

References

[1] Arsanjani, A.: Service-Oriented Modeling and Architecture (SOMA), IBM developer-
Works 2004, http://www.ibm.com/developerworks/webservices/library/ws-soa-design

[2] Bass, L., Clements P., Kazman R., Software Architecture in Practice, 2nd Edition,
Addison Wesley, 2003.

[3] Bell, M., Service-Oriented Modeling (SOA): Service Analysis, Design, and Architecture,
Wiley, 2008.

[4] Boehm B., A View of 20th and 21st Century Software Engineering. In: Proceedings of the
28th international Conference on Software Engineering ICSE, 12-29, ACM Press, 2006.

[5] Engels G., Hess A., Humm B., Juwig O., Lohmann M., Richter J. P., Voß M., Willkomm
J., A Method for Engineering a True Service-Oriented Architecture. In: Proc. of ICEIS
2008.

[6] Erl T., Service-Oriented Architecture: Concepts, Technology & Design. Prentice Hall,
2005.

[7] Erradi A., Anand S., Kulkarni N., SOAF: An Architectural Framework for Service
Definition and Realization. Proceedings of SCC’06, IEEE Computer Society, 2006, pp
151-158.

[8] Everware-CBDI Inc, CBDI Service Architecture & Engineering: A Framework and
Methodology for Service-Oriented Architecture (SOA). CBDI Report, 2006.

[9] Fowler M., Open Space Sessions, http://www.martinfowler.com/bliki/OpenSpace.html
[10] Hohpe G., SOA Patterns – New Insights or Recycled Knowledge?

http://www.eaipatterns.com/docs/SoaPatterns.pdf
[11] Krafzig D., Banke K., Slama D., Enterprise SOA, Prentice Hall, 2005.
[12] Kruchten P., The Rational Unified Process: An Introduction. Addison-Wesley, 2003.
[13] Meyer B., Object-Oriented Software Construction, 2nd Edition. Prentice Hall, 2000.
[14] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. 2007. Service-Oriented

Computing: State of the Art and Research Challenges. Computer 40, 11 (Nov. 2007), pp.
38-45.

[15] Papazoglou M., van den Heuvel W. J., Service-Oriented Design and Development
Method, International Journal of Web Engineering and Technology (IJWET), Volume 2
No 4. Inderscience Enterprises, 2006, pp. 412-44.

[16] Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

[17] SECSE, Service-Centric System Engineering. http://secse.eng.it/pls/secse/secse.home,
2004-2008.

[18] SOA Practitioners’ Guide Part 3: Introduction to Service Lifecyle.
http://www.healthmgttech.com/editorial_whitepages/SOAPGPart3.pdf. 2006

[19] van den Heuvel W. J., Zimmermann O., Leymann F., Lago P., Schieferdecker I., Zdun U.,
Avgeriou P., Software Service Engineering: Tenets and Challenges. In: Proceedings of
ICSE 2009 Workshop - Principles of Engineering Service Oriented Systems (PESOS),
IEEE Computer Society, May 2009.

[20] Zimmermann O., Koehler J., Leymann F., Polley R., Schuster N., Managing Architectural
Decision Models with Dependency Relations, Integrity Constraints, and Production Rules.
Journal of Software and Services, Special Edition on Architectural Decisions, Elsevier,
2009.

