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t This paper introdu
es two Mixed Integer Linear Programming (MILP) modelsfor railway tra�
 planning using a 
umulative s
heduling 
onstraint and asso
iated pre-pro
essing �lters. We 
ompare standard solver performan
e for these models on threesets of problems from the railway domain and for two of them, where tasks have unitaryresour
e 
onsumption, we also 
ompare them with two more 
onventional models. In theexperiments, the solver performan
e of one of the 
umulative models is 
learly the bestand is also shown to s
ale very well for a large s
ale pra
ti
al railway s
heduling problem.Keywords. Railway transport s
heduling, Cumulative s
heduling, Mixed Integer LinearProgramming (MILP) modelling and pre-pro
essing1 Introdu
tionRailway s
heduling is a ri
h sour
e of 
hallenging optimisation and 
ombinatorial de
ision prob-lems. Along with vehi
le routing problems with some unique properties [1,2,3℄, tra
k resour
es
heduling [4,5℄ is at the 
ore of timetable 
onstru
tion for modern rail tra�
 planning. Themethods des
ribed in this paper may be used to verify feasibility of proposed timetables, sear
h(or optimise) for timetables with 
ertain properties, or redu
e 
on�i
ts between disparate re-quirements originating from e.g. 
ustomers, business areas or transport politi
al priorities withinthe infrastru
ture manager. The presentation of the methods is rather te
hni
al but most of theproblems used in the empiri
al se
tions are derived from real �xed timetables and early stagetimetable proposals. The results 
learly indi
ate one of the des
ribed methods as superior forthis important pra
ti
al railway s
heduling problem.Constraint programming (CP) te
hniques have been quite su

essful in solving both a
ademi
[6,7,8,9,10℄ and real-world s
heduling problems [11,12,13,14,15℄. One of the main bene�ts of CPfor su
h problems is the presen
e, in most modern solvers, of very e�
ient �ltering me
hanismsin the form of 
onstraint abstra
tions for both 
lassi
al job shop and generalisations su
h as the
umulative resour
e s
heduling problem. Using demand-driven �ltering during sear
h for inte-ger solutions 
onstitutes a powerful de
ision me
hanism that have also been used su

essfully foroptimisation [16,8℄. However, to optimise 
lassi
al job shop problems and their 
umulative gener-alisations e�
iently it is generally also ne
essary to employ quite sophisti
ated sear
h heuristi
s.Mixed Integer Linear Programming (MILP) is another te
hnique for 
ombinatorial problemsolving whi
h have been applied to a wide variety of industrial-level problems. For s
hedulingproblems with unitary resour
es, standard linear boolean formulations also s
ale very well, es-pe
ially for problems with a lot of linear side 
onditions that 
an be exploited by modern MILPsolvers.
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umulative s
heduling problems, however, there do not seem to exist any standard MILPformulations. For 
ertain 
lasses of problems, e.g. where all tasks have unitary resour
e 
onsump-tion, formulations based on geometri
 pla
ement 
an be used [5℄. These 
an, as we will see, bequite e�
ient for the problems they 
an en
ode.Cumulative 
onstraints [17℄ are well known in the CP 
ommunity where e�
ient algorithmsbased on sweep [18℄ and/or task-intervals [19℄ are used to prune the sear
h spa
e, both as apre-pro
essing me
hanism and on demand for variable domain redu
tion during sear
h. Severalvariants of the 
onstraint have been des
ribed e.g. in [20℄.These 
onstraints normally restri
t the 
umulative 
apa
ity utilisation of tasks exe
utingsimultaneously not to ex
eed an upper bound. Capa
ities and 
apa
ity utilisation are normally�xed integers while the start times and durations are de
ision variables. Variants where theresour
e 
onsumption of ea
h task is also variable and possibly 
onstrained by the start timeand duration o

ur as well. In this paper we fo
us on the 
ase where the 
apa
ity and theresour
e 
onsumption are 
onstant integers. We have not found this to be restri
tive in pra
ti
efor pra
ti
al problems in the railway domain.Geometri
 pla
ement 
onstraints are related to 
umulative 
onstraints. The most 
ommonform is probably that of �ltering for non-overlap of re
tangles in the plane [21℄ whi
h, in the
ontext of s
heduling, 
orresponds to allo
ation of unit 
apa
ity resour
es to tasks with unit re-sour
e 
onsumption 
ombined with a multi-resour
e s
heduling problem. The resour
e allo
ationis represented as the pla
ement of a a unit height re
tangle in the y-dimension and the start timeas the pla
ement of its left edge and the duration as its length in the x-dimension.In 
lassi
al 
umulative s
heduling, there is no 
on
ept 
orresponding to the pla
ement ofthe lower edge on the y-axis, and the resour
e 
onsumption is arbitrary. Still, the spe
ial 
aseof unit resour
e 
onsumption is of 
onsiderable pra
ti
al interest, and for these, the pla
ementformulation 
an be used by 
onsidering the number of resour
es as a 
umulative 
apa
ity andjust ignoring the values of the y-pla
ement variables. Any solution to the pla
ement problem is
learly feasible for the 
umulative as well.We will des
ribe four di�erent models, two for the pla
ement formulation and two for the
umulative 
onstraint, de�ne �ltering methods for ea
h, note some of their 
omplexity propertiesand investigate solving performan
e for them on three separate sets of problems. The �rst twosets of problems are derived from a pra
ti
al 
ase in rail tra�
 s
heduling where all the taskshave unit resour
e 
onsumption. In the third, a set of random problems with a more generalstru
ture and of varying sizes and di�
ulties are studied.In addition, in a fourth, empiri
al se
tion, we brie�y des
ribe the results of using a sele
tionof the des
ribed methods in an industrial s
ale rail transport s
heduling problem. This problemwas what originally motivated our resear
h, and even though the problem has a quite spe
ialstru
ture it is of great pra
ti
al importan
e. We 
on
lude with a summary of our �ndings.2 Preliminaries and notation2.1 Notation for model parameters and variablesLet n denote the number of tasks (individual trains using a tra
k or station resour
e) in theproblem and use 0 < i, j ≤ n as task indi
es. Let, furthermore, c denote the resour
e (station)
apa
ity limit and hi the resour
e 
onsumption for task i. Let si denote the start time variablefor task i, bounded by an interval si ≤ si ≤ si and di the duration variable for task i, boundedby an interval di ≤ di ≤ di.
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heduling 32.2 Maximal 
lique 
onstru
tionIn 
umulative s
heduling it is often useful to do an analysis of the parameters and bounds ofthe problem. One of the most obvious ways to do this is to 
onstru
t subsets of tasks that 
anoverlap in time. In CP, this type of 
omputation is performed iteratively during sear
h to �lterthe domains or bounds of the de
ision variables, but it 
an also be used for pre-pro
essing inMILP formulations to �lter equations and booleans that need not be maintained by the solver.Formally, this is a
hieved by 
onsidering the tasks of the problem as nodes in a graph andletting two tasks i and j be 
onne
ted by a link if and only if they 
an overlap in time. Then,all maximal 
liques (
ompletely 
onne
ted sub-graphs) of this graph will have the property that,unless a task is already in the 
lique, it 
annot overlap all the others.This is a very useful property in 
umulative s
heduling sin
e when we wish to limit the numberof simultaneously overlapping task, it is su�
ient to 
onsider ea
h maximal 
lique separately andthe 
omplexity of enfor
ing 
umulative 
onditions on the set of all tasks is often bounded by somefun
tion of the sizes of the maximal 
liques, rather than the size of the task set itself. In pra
ti
alproblems this is often of great value, sin
e the majority of tasks 
annot be arbitrarily pla
ed intime. This makes the maximal 
liques small 
ompared to the total number of tasks.To 
onstru
t the set of all maximal 
liques used in the models below, we use a straightforwardsweep algorithm whi
h has linear time 
omplexity in the size of the set of tasks. In the modeldes
ription below we will often generate a set of equations for ea
h maximal 
lique Clqk andwhere 1 ≤ nk ≤ n is the size of the k'th 
lique.3 Model des
riptionsThe �rst two models des
ribed below are restri
ted to handle tasks with unitary resour
e require-ments. The reason for this is that these are based on a re
tangle pla
ement approa
h whi
h doesnot 
apture the general 
umulative 
onstraint whi
h may be satis�ed even though no re
tanglepla
ement exists. They are, in fa
t, more 
lose to models for pla
ing non-overlapping re
tanglesof unit height onto the plane. In pra
ti
e however, these are quite useful models sin
e in manysituations where the 
umulative 
onstraint is used, there is an underlying problem stru
ture ofthis type. E.g. in train s
heduling, a station may be modelled as a 
umulative resour
e thatallows a maximum number of trains to o

upy the station at any one time. The type of modelproposed here allows us to also ex
lude the use of 
ertain tra
ks for a parti
ular train, dependingon tra
k lengths or other 
apa
ity restri
tions, whi
h is not straightforward in a pure 
umulativemodel.The next two models 
apture the semanti
s of a general 
umulative 
onstraint with a �xedupper bound on resour
e 
onsumption and arbitrary but �xed resour
e 
onsumption for all tasks.3.1 Expli
it unitary resour
e allo
ation (integer formulation)This model treats ea
h 
umulative resour
e as a 
olle
tion of unitary sub-resour
es and expli
itlyallo
ate these to tasks with unit resour
e 
onsumption. This is a
hieved through the use of aninteger de
ision variable yi for ea
h task i to denote the individual sub-resour
e allo
ated to thetask. If two tasks i and j use the same sub-resour
e, they must be non-overlapping in time. Themodel uses two boolean variables pij and wij for ea
h pair of transports i and j. pij = 1 is usedto en
ode that the task i 
ompletely pre
edes task j and wij = 1 that they do overlap in time,and thus must use di�erent sub-resour
es.First, let us express a non-overlap 
onstraint: Either the end time of task i is less than orequal to the start time of task j: si + di − sj ≤ 0 or the same is true for task j in relation to task
i: si − sj − dj ≥ 0. We re�e
t this disjun
tion in the boolean pij :



4 M. Aronsson, M. Bohlin, P. Kreuger
si + di − sj − M (1 − pij) ≤ 0

si − sj − dj + M pij ≥ 0where M is any 
onstant large enough to dominate the equation in whi
h it o

urs. This is, of
ourse, a standard formulation that o

urs everywhere in the literature (see e.g. [22,23℄) but howdo we pro
eed if we want to 
ount and limit the number of overlapping tasks?In the 
ase where we do want to allow an overlap we need an additional boolean that 
an
elsthe e�e
t of the above equations. We want to do this in a way so that whenever this variabletakes the value 0, our equations will be equivalent to the ones above, and 
an
el them 
ompletelyotherwise:
si + di − sj − M (1 − pij) − M wij ≤ 0

si − sj − dj + M pij + M wij ≥ 0When the two tasks do overlap, and the variable wij thus takes the value 1, we need to ensurethat the two tasks are allo
ated di�erent sub-resour
es. We 
an do this by ensuring that thedi�eren
e between yi and yj is nonzero:
yi − yj + M uij + M (1 − wij) > 0

yj − yi + M (1 − uij) + M (1 − wij) > 0where yi, yj are integers and the booleans uij en
odes if yi < yj or the other way around, in the
ase where wij is 0.As noted above, it is su�
ient to enfor
e these 
onditions for ea
h pair of tasks in the maximal
liques, so that for ea
h 
lique Clqk with nk tasks, the number of integer variables will be nk,the number of booleans 3nk(nk−1)
2 and the number of equations will be 2nk(nk − 1). Note that,by sharing variables between the 
liques, the total numbers are signi�
antly less than the sumover all 
liques and is, for the integer variables, bounded by n and for the booleans, by 3n(n−1)

2 .In summary, the temporal non-overlap 
ondition for tasks allo
ated the same sub-resour
e
an (sin
e y-variables are integers) thus be stated in linear form as:
si − sj + di + M pij − M wij ≤ M

si − sj − dj + M pij + M wij ≥ 0

yi − yj + M uij − M wij ≥ 1 − M

yj − yi − M uij − M wij ≥ 1 − 2 Mfor all pairs i < j ∈ Clqk of tasks and ea
h maximal 
lique Clqk, where pij , wij , uij are booleansand 1 ≤ yi, yj ≤ c are integers. Note that we need to enfor
e the equations in the solver onlywhen the size of the 
lique is stri
tly larger then the resour
e 
apa
ity.3.2 Expli
it unitary resour
e allo
ation (boolean formulation)This model is very similar to the one above but uses, instead of ea
h integer variable yi, c numberof booleans mik, ea
h being one, denoting that the task i is allo
ated sub-resour
e k. We want toenfor
e the overlap 
ondition between two tasks i and j if and only if mik = mjk = 1 for some ki.e. if (1−mik) = (1−mjk) = 0. The equations stating the non-overlap 
an then be formulated:
si + di − sj − M (1 − pij) − M (1 − mik) − M (1 − mjk) ≤ 0

si − sj − dj + M pij + M (1 − mik) + M (1 − mjk) ≥ 0



MILP formulations of 
umulative 
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heduling 5whi
h in linear form be
omes
si + di − sj + M pij + M mik + M mjk ≤ 3 M
si − sj − dj + M pij − M mik − M mjk ≥ 2 Mfor all pairs of tasks i < j ∈ Clqk, for ea
h maximal 
lique Clqk, and ea
h 0 < k < c and where,in addition, the resour
e 
ondition is stated:

∑

0<k≤c

mik = 1for all tasks i, i.e. essentially a set partitioning formulation.Note that the number of booleans and overlap equations now in
rease by a fa
tor of 2c tobe
ome cnk(nk −1) where nk is the size of the 
lique and c the resour
e 
apa
ity. The number ofresour
e 
onditions, on the other hand, now depends linearly on the produ
t of cnk. We wouldexpe
t this model to be reasonably e�
ient when c is small in 
omparison to the 
lique size nk. If,on the other hand these parameters are of 
omparable size, the number of booleans is e�e
tively
ubi
. The advantage of this type of model is that the modern MILP-solvers tend to treat pureboolean formulations more e�
iently than general MILP formulations.A similar model for a tra�
 (re)s
heduling problem was presented in [5℄ as part of a largermodel 
apturing several more aspe
ts of a train (re)s
heduling problem but this type of modelis probably more or less a standard formulation.3.3 Min 
on�i
ting sub-
lique modelThis model 
aptures the 
lassi
al 
umulative 
onstraint more exa
tly than the ones proposedabove in the sense that tasks may have arbitrary resour
e 
onsumption and that there is nonotion of sub-resour
es.The idea behind this model is that for ea
h maximal 
lique with tasks of su�
ient 
umulativeresour
e 
onsumption, there exists a (possibly large) number of minimal sub-
liques su
h thatthe sum of the resour
e 
onsumptions of the involved tasks ex
eeds the resour
e 
apa
ity c. Theyneed to be minimal in the sense that removing any single element would make the sum of resour
e
onsumptions of the remaining tasks less than or equal to the resour
e 
apa
ity. This means thatwe 
an limit the number of a
tual overlaps in the sub-
lique to be stri
tly less than the numberof pairs in the (minimal) 
lique itself.Sin
e ea
h larger sub-
lique that 
an 
ontribute to a violation of the 
onstraint 
an do soonly by violating a minimal sub-
lique of itself, it is su�
ient to state the resour
e 
onditionsfor the minimal sub-
liques. We will use the same formulation for the non-overlap 
ondition asbefore, i.e.
si + di − sj + M pij − M wij ≤ M

si − sj − dj + M pij + M wij ≥ 0for all i < j ∈ Clqk and ea
h maximal 
lique Clqk. We may now 
ount and limit the number ofoverlaps in ea
h minimal sub-
lique as follows
∀Mn ⊆ Clqk

0

@

 

X

i∈Mn

hi > c

!

∧

 

∀Sb ⊂ Mn
X

i∈Sb

hi ≤ c

!

→
X

i≤j∈Mn

wij <

 

|Mn|

2

!

1

Afor ea
h maximal 
lique Clqk in the problem where the �rst 
onjun
t in the pre
ondition of theimpli
ation requires that the sub-
lique 
an in fa
t 
ontribute to a resour
e 
on�i
t, the se
ond



6 M. Aronsson, M. Bohlin, P. Kreugerstates the minimality 
ondition and the 
on
lusion limits the number of overlap variables that
an take the value one to be stri
tly less than the number of pairs in the minimal sub-
lique.Note that the tests for ea
h potential sub-
lique 
an be done when generating the equations andonly the linear sum expression ∑

i≤j∈Mn wij ≤
(

|Mn|
2

)

− 1 needs to be enfor
ed by the solver.In this model, for ea
h 
lique Clqk with nk tasks, both the number of booleans and numberof overlap equations will be nk(nk − 1). The number of minimal sub-
liques and 
orresponding
lique equations, for a given max 
lique, however, depends both on the 
lique size |Clqk|, theresour
e 
apa
ity c and the distribution of resour
e 
onsumption for the involved tasks, and mayin the worst 
ase be exponential in the �rst two parameters. E.g. if the resour
e 
onsumption ofall tasks is one, the number of minimal sub-
liques will be the number of sub-
liques of a givensize c, i.e. (

|Clqk|
c+1

). Even though modern IP-solvers are mu
h more sensitive to the number ofbooleans than to the number of equations, this is 
learly a disadvantage of this model.Even worse, the number of sub-
liques to be tested for minimality is always exponential in the
lique size. This means that the algorithm generating the equations should be very sensitive toin
rease in 
lique size. Still, for a typi
al randomly generated problem 
onsisting of 300 tasks ona single resour
e, arbitrary resour
e 
onsumptions up to a resour
e 
apa
ity of 5, max/average
lique size of 26/18 and 139 separate 
liques, all 9 752 equations are generated in about 170se
onds on a 1.6 GHz i686 laptop, so the �ltering does s
ale to pra
ti
al problem sizes and, formany large s
ale pra
ti
al problems, the method performs, as we will see in se
tion 4, very well.3.4 Start point 
lique height sum modelThis model is based on the observation that for ea
h start point of a task, it su�
es to measureand limit the resour
e 
onsumptions of the other tasks that are possibly a
tive at that point.For ea
h task i of a maximal 
lique with elements of su�
ient size to generate a 
on�i
t,
onsider ea
h other task j in the 
lique that has an earliest start point less than or equal to thelatest start point of task i and a latest end point greater than the earliest start of i. Sin
e onlythese 
an overlap task i we 
onstru
t for ea
h su
h task a boolean variable wij whi
h will take thevalue 1 if and only if the start of task i falls within the duration of task j, i.e. if sj ≤ si < sj +dj .In order to do this, 
onsider �rst the situation where this is not the 
ase, i.e. where either sj > sior si ≥ sj + dj . En
ode this disjun
tion with a boolean pij su
h that:
si − sj − M (1 − pij) < 0

si − sj − dj + M pij ≥ 0and use wij = 1 to en
ode the 
an
ellation of these equations as follows:
si − sj + M pij − M wij < M

si − sj − dj + M pij + M wij ≥ 0.where pij , wij are booleans and the stri
t inequality in the �rst equation would in a pure MILPformulation be handled by the addition of a suitably small ǫ on the RHS.Now, for ea
h element i in ea
h 
lique Clqk 
onstrain the s
alar produ
ts: ∑

j∈Clqk\{i} hjwijto be less than or equal to the resour
e 
apa
ity c minus the resour
e 
onsumption hi of the task
i:

∀i ∈ Clqk

∑

j∈Clqk\{i}

hjwij ≤ c − hifor all maximal 
liques Clqk where wij are booleans. The number of 
lique equations is linear inthe (maximal) 
lique size, but sin
e the overlap equations are no longer symmetri
, these must
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heduling 7be stated for ea
h ordered pair of tasks in the 
lique. This means that the number of booleansand overlap equations will both be 2nk(nk−1), whi
h is twi
e as many as in the model of se
tion3.3.4 Empiri
al �ndingsThis se
tion reports trial runs of the proposed methods on a number of di�erent problems.Most of the problems are derived from an appli
ation in train s
heduling, but sin
e these onlyhave tasks with unitary resour
e 
onsumption, we have also evaluated the methods on a set ofrandomly generated problems where the resour
e 
onsumption varies up to the resour
e 
apa
ity.Two sets of examples are single resour
e problems while the other two are more realisti
 examples
onsisting of trains using several resour
es in �xed sequen
es, job shop style.4.1 Single resour
e unitary resour
e 
onsumption examplesWe have evaluated all four models on a set of problems derived from the domain of train timetablegeneration. More results on the full problem is presented in se
tion 4.4 below. In this se
tion, we
onsider a single resour
e at the time and present results for a number of representative stationresour
es of varying size.In table 1 the problem parameters and properties are summarised. We note that all problemsTable 1. Problem statisti
s for a sele
tions of stations in the train problemStation KS1 FA TÄL LLN MH ÖB LÅÖ GDÖ SK HPBGCapa
ity 1 2 2 2 3 3 3 4 5 10Tasks 471 711 1000 1000 684 907 1000 717 804 1391Cliques 246 319 520 591 194 356 489 120 63 43Max/Avr 
lq size 7/3 7/4 8/5 9/5 7/4 8/5 9/5 7/5 8/6 14/11are fairly large in terms of number of tasks but sin
e the problems were generated by introdu
inga �xed amount of sla
k (±15 minutes) in a given feasible solution, the number of potential
on�i
ts and hen
e 
lique sizes is relatively small. We would argue that this is a quite 
ommonsituation in many large s
ale pra
ti
al problems, and as shown in se
tion 4.4, methods to solvesu
h problems 
an 
ertainly be put to very good use. Here we try to show that the methodswe have des
ribed are in fa
t very good at exploiting this type of problem stru
ture and s
alesurprisingly well 
onsidering that only default settings of the CPLEX solver were used to produ
ethe solutions.Table 2 gives the number of equations, booleans and integers for ea
h of the four models andrun-times for CPLEX 9.0 on a single 
ore 2.6 GHz i686 Xenon pro
essor. In addition, the timetaken to generate the equation sets for ea
h of the models is given in the last four rows. Theshort names of models used in the table are �MC� for the �Min 
on�i
ting sub-
lique model�of se
tion 3.3, �SC� for the �Start point height sum model� of se
tion 3.4, �RB� for the booleanformulation of the �Expli
it resour
e allo
ation model� of se
tion 3.2 and �RI� for the integerversion presented in se
tion 3.1.We note that the MC model is always best in terms of CPLEX exe
ution time but that forsome of the larger problems, the time to generate the equation set in
reases the total time tosolve the problem signi�
antly. Just adding the times together does not ne
essarily tell the whole
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s for a sele
tion of stations in the train s
heduling problemParam. Method(s) KS1 FA TÄL LLN MH ÖB LÅÖ GDÖ SK HPBGBools MC 1 588 3 108 6 532 6 666 2 416 4 820 6 448 2 040 1 644 2 780SC 3 175 6 216 13 054 13 319 4 810 9 580 12 882 4 080 3 249 5 403RB 1 231 2 832 5 166 5 239 2 663 4 717 5 906 2 516 2 227 3 680RI 2 382 4 662 9 798 9 999 3 624 7 230 9 672 3 060 2 466 4 170Integers MC, SC, RB 0 0 0 0 0 0 0 0 0 0RI 437 639 950 953 485 769 894 374 281 229Eqns. MC 2 382 4 800 11 842 12 067 3 204 8 146 11 660 2 432 1 863 4 185SC 3 964 7 532 15 711 16 342 5 700 11 451 15 486 4 727 3 632 5 801RB 2 025 6 858 14 014 14 285 7 733 15 229 20 238 8 534 8 501 28 029RI 3 176 6 216 13 064 13 332 4 832 9 640 12 896 4 080 3 288 5 560Solve (s) MC 0.03 0.29 1.23 1.54 0.09 0.34 0.64 0.06 0.06 0.25SC 0.14 11.16 45.07 38.04 0.73 6.42 14.00 0.20 0.18 0.39RB 0.03 1.06 3.18 11.26 1.22 5.04 13.23 1.90 0.73 5.08RI 0.04 3.08 23.89 22.66 0.58 1.78 17.93 0.51 0.39 1.70Gen. (s) MC 0.17 0.69 2.42 2.52 0.63 2.47 3.87 0.54 0.47 10.86SC 0.30 0.70 1.71 1.93 0.48 1.20 1.74 0.45 0.34 0.82RB 0.17 0.51 1.09 1.13 0.55 1.06 1.51 0.61 0.59 1.73RI 0.15 0.35 0.69 0.71 0.27 0.51 0.70 0.24 0.20 0.35story either, sin
e the time to generate the equations may still be small in 
omparison with thesolver time for e.g. problems with several distin
t resour
es. We will next 
onsider su
h a 
ase.4.2 Multiple resour
e unitary resour
e 
onsumption exampleIn this se
tion we explore the models on a more 
omplex s
heduling problem derived from thesame domain as those above. In this 
ase we extra
ted all the tra�
 through an area around thetown of Hässleholm in southern Sweden. The area 
onsists of 21 distin
t resour
es of whi
h 12 areunitary (tra
k) resour
es, 2 are large stations with 
apa
ities of 24 and 16 respe
tively and therest are smaller stations and tra
k segments with a 
apa
ity of either one or two. Starting from afeasible timetable 
onsisting of 5972 individual tasks, we re
onstru
ted the pre
eden
e relationsfor all the jobs (trains) and relaxed the start times of all tasks to sla
k sizes of 50, 70 and 90minutes respe
tively. The resulting problem properties and run time statisti
s is summarised intable 3. For ea
h problem, the resulting number of 
liques, the maximum and average 
lique sizeis given and then, for ea
h model, the number of booleans, integers and equations generated andrun time to produ
e an optimal solution is given. The last 
olumn gives the time to generate theequations for this experiment.For all problems the MC method is again 
learly the best, even if we in
lude the time takento generate the equations.4.3 Single resour
e arbitrary resour
e 
onsumption examplesTo test and 
ompare the two models that e�e
tively handle tasks with arbitrary resour
e 
on-sumption we generated a set of random problems with di�erent number of tasks, upper bounds onlatest 
ompletion and sla
k. For ea
h su
h problem size we generated 10 problems and attemptedto solve ea
h with the two methods with a time limit of 15 minutes.
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Table 3. Problem and solution statisti
s for the 21 resour
e problemSlk Clqs Mx Av Method Bools/Ints Eqtns Solv Tm Gen Tm50 2 538 10 2.64 MC 18 766/0 32 737 5.14 2.93SC 37 404/0 70 071 25.62 5.46RB 14 365/0 30 946 6.08 2.78RI 28 149/4 244 42 284 20.16 2.3570 2 652 13 3.41 MC 28 196/0 47 802 11.27 4.65SC 56 173/0 101 126 154.22 9.32RB 19 553/0 42 733 36.01 3.89RI 42 294/4 527 61 144 73.64 3.3090 2 672 15 4.06 MC 36 280/0 61 514 22.64 6.67SC 72 404/0 127 937 252.87 13.63RB 23 677/0 52 382 78.55 5.07RI 54 420/4 588 77 312 134.69 4.24

Table 4. Run times for a set of random problems with varying resour
e 
onsumptionClq Sz MC SCTasks Cp
t End Sla
k Mx Av Failed Avr rnTm Failed Avr rnTm20 3 50 10 7 3 0 0.01 0 0.0215 9 4 0 0.05 0 0.2320 10 5 0 4.41 1 71.0625 14 7 2 60.10 6 115.3330 14 7 2 101.01 6 44.2335 13 8 3 183.02 9 483.9840 13 9 4 136.71 7 379.6645 16 9 6 297.42 9 78.7150 17 11 5 152.75 10 -30 3 75 10 8 4 0 0.05 0 0.5615 10 4 0 28.73 2 4.8520 10 6 2 52.94 6 150.4125 12 7 1 233.90 7 268.8530 14 7 8 21.70 10 -35 16 8 9 277.75 10 -50 3 150 10 9 3 0 2.46 0 13.2515 8 4 0 11.68 1 37.0120 12 5 5 141.06 9 316.9225 12 6 7 210.24 10 -
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h row in table 4gives the number of tasks, the 
apa
ity of the resour
e, the latest end timeand the maximum sla
k size of the problem 
lass and reports the maximum and average 
liquesizes for the ten generated problems. For ea
h model MC and SC, we then give the number ofproblems (out of 10) we failed to solve in the allotted time (15 minutes) and the average solverrun time for the problems were we did manage to �nd and prove the optimal solution.All the problems were fairly tight, with the sum of task surfa
es generally 
overing between85 and 100% of the resour
e area. Sla
k sizes were also randomly generated from a given (non-optimal) solution but limited by a maximum time window. These properties make these examplesquite di�erent from those from the train domain that 
onsist of huge amounts of tasks but withsmall sla
k sizes.We 
an see again that the methods exploit the given problem stru
ture very well but thatperforman
e degrade qui
kly as the 
lique maximum sizes in
rease above around 10. The 
liquemaximum and average size are 
learly fun
tions of the sla
k in the start time of ea
h task.The larger the sla
k, the more tasks potentially overlap whi
h is pre
isely what the 
lique sizemeasures.On
e more, the MC model is 
learly the best in terms of run time of the solver and in thenumber of solutions proved optimal. The a

umulated time to generate the equations for ea
h
lass of problems was in this experiment small (< 4 se
onds) in 
omparison with the solver runtime and, somewhat surprisingly, very similar for the two models, even for the more di�
ultproblems.To explore the relative s
aling of the two methods with respe
t to equation generation/�lteringtime more 
losely, we also studied the e�e
t of in
reasing the sla
k for a set of larger randomlygenerated problems. We �xed the number of tasks to 200, the latest end time to 600 and theresour
e 
apa
ity to 5. Plotting only the time to generate the equations against the maximumsla
k for the two models, yielded the graph in �gure 1. Ea
h entry in the plot represents the

Figure 1. Time in se
onds to generate the equations for the two models (MC=squares,SC=diamonds) against in
reasing start time sla
k sizemean of 10 random problems of ea
h sla
k size, from 10 to 80.
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learly visible but already for a sla
kof 60, typi
al max/average 
lique sizes are around 20/15 and the number of booleans for SC isabout 9000. For problems of this size the solver time 
ompletely dominates the total time. Goingup to even larger 
liques, i.e. above max/average 30/20 , the generator (a Prolog program) runsout of memory for MC, so this method is no longer an option. The value of SC would still haveto be questioned for problems of this size sin
e the solver would most likely spend hours andprobably days, to �nd solutions in su
h 
ases. However, it may still be of value for other types ofproblems, though at this point we have not found a way to 
hara
terise su
h a 
lass of problems.4.4 Large s
ale real world appli
ationAll the models des
ribed in this in these papers were originally developed as alternatives toan earlier CP-based s
heduling system for train timetable generation [24,4,25℄ but for the fullsize version of this problem we have thoroughly investigated only the MC model of se
tion 3.3.The test runs were performed on a number of problems sele
ted from the real train timetablegeneration problem of the Swedish rail system for two 
onse
utive years, 2004 and 2005.One set of problems was extra
ted from the a
tual timetable for 2004 and then relaxed withrespe
t to departure times. Tra
ks are 
onsidered unitary resour
es ex
ept in the 
ase of singletra
k lines whi
h a

ommodate trains in both dire
tions (see [4℄ for details) while stations weremodelled as 
umulative resour
es a

ommodating from 2 up to some 20 simultaneous trains.In
luded in this set was a large area around the most important shunting yard in Sweden,Hallsberg. This problem 
onsists of 175 tra
ks and 146 stations, 2 821 trains and around 60 000tasks. The start time for ea
h task was relaxed ±15 minutes from a given solution and pre
eden
eand resour
e 
onstraints were generated, resulting in a very large problem but where the size ofea
h individual 
lique was fairly small. Finding a feasible solution to this problem with CPLEX9.0 took about 70 se
onds on IBM Thinkpad T42 with a single 
ore 1.8 GHz i686 pro
essor. Ase
ond smaller problem generated in the same way, 
onsisting of some 24 000 tasks, was solvedin 27 se
onds on the same ma
hine.A se
ond set of problems was extra
ted from the 
apa
ity requests from the various railtra�
 operators for the following year. Sin
e the 
apa
ity requests 
ome from several di�erentand unrelated sour
es we typi
ally have many unresolved resour
e 
on�i
ts at the start of theplanning pro
ess. For this problem we again introdu
ed a sla
k of ±15 minutes for the start timeof the stated requirement. For one sub-problem 
onsisting of some 15 000 tasks and with 149unresolved 
on�i
ts, a partial solution with only 2 remaining 
on�i
ts was generated in about
100 se
onds.For the problem in the area around Hallsberg in this set we also tried allowing the system tointrodu
e new low priority resour
e 
on�i
ts1 where it would help to eliminate the 137 originalhigh priority 
on�i
ts. In this 
ase we introdu
ed a smaller sla
k of ±5 minutes. All high priority
on�i
ts were eliminated in 40 se
onds of exe
ution time at the 
ost of introdu
ing only one newlow priority 
on�i
t.The largest single problem we approa
hed 
onsists of most of the tra�
 in the northern partof the 
ountry, with 3 643 trains, almost 199 620 tasks on 661 tra
ks and 611 stations. Initiallythe data 
ontained 1 030 high priority 
on�i
ts. Running CPLEX 9.0 on a faster 2.6GHz Xenonpro
essor for about 600 se
onds eliminated all high priority 
on�i
ts and introdu
ed 6 new lowpriority 
on�i
ts. Running the solver for several days on this problem we were able to prove thatno solution exists with less than 4 su
h low priority 
on�i
ts.1 i.e. between 
ertain 
argo trains for whi
h the un
ertainty in a
tual arrival times and toleran
e forsmaller delays was larger.
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lusionWe have introdu
ed two MILP models for the general 
umulative s
heduling 
onstraint and 
om-pared them to two for the spe
ial 
ase where resour
e 
onsumption is unitary based on geometri
pla
ement models. For ea
h of these, we have de�ned pre-pro
essing �lters and 
ompared solverperforman
e on up to three sets of problems.In all the experiments, the solver performan
e of one of the general 
umulative models, the�Minimum 
on�i
ting sub-
lique (MC) model�, is 
learly the best in terms of solver time. For thismodel, the �ltering me
hanism has exponential time 
omplexity in general but in pra
ti
e thishas little impa
t on total time to generate and solve the problem. This is so, at least, for thetype of problems 
onsidered, sin
e the �ltering time be
omes signi�
ant only for problems wherethe solver would struggle to �nd any integer solution.We also report brie�y on a full s
ale industrial s
heduling problem where theMCmodel is usedto produ
e feasible s
hedules for several hundred thousands of tasks on thousands of resour
es.These problems are solvable only be
ause the start time window of ea
h task is small and thepotential number of overlaps between tasks on ea
h resour
es are often orders of magnitudesmaller than the total number of tasks. For su
h problems the �ltering proposed methods arevery e�
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