
MILP formulations of umulative onstraints forrailway sheduling � A omparative studyMartin Aronsson1, Markus Bohlin1 and Per Kreuger1Swedish Institute of Computer Siene,Box 1263, SE-164 29 Kista, SwedenMartin.Aronsson�sis.se, Markus.Bohlin�sis.se, Per.Kreuger�sis.seAbstrat This paper introdues two Mixed Integer Linear Programming (MILP) modelsfor railway tra� planning using a umulative sheduling onstraint and assoiated pre-proessing �lters. We ompare standard solver performane for these models on threesets of problems from the railway domain and for two of them, where tasks have unitaryresoure onsumption, we also ompare them with two more onventional models. In theexperiments, the solver performane of one of the umulative models is learly the bestand is also shown to sale very well for a large sale pratial railway sheduling problem.Keywords. Railway transport sheduling, Cumulative sheduling, Mixed Integer LinearProgramming (MILP) modelling and pre-proessing1 IntrodutionRailway sheduling is a rih soure of hallenging optimisation and ombinatorial deision prob-lems. Along with vehile routing problems with some unique properties [1,2,3℄, trak resouresheduling [4,5℄ is at the ore of timetable onstrution for modern rail tra� planning. Themethods desribed in this paper may be used to verify feasibility of proposed timetables, searh(or optimise) for timetables with ertain properties, or redue on�its between disparate re-quirements originating from e.g. ustomers, business areas or transport politial priorities withinthe infrastruture manager. The presentation of the methods is rather tehnial but most of theproblems used in the empirial setions are derived from real �xed timetables and early stagetimetable proposals. The results learly indiate one of the desribed methods as superior forthis important pratial railway sheduling problem.Constraint programming (CP) tehniques have been quite suessful in solving both aademi[6,7,8,9,10℄ and real-world sheduling problems [11,12,13,14,15℄. One of the main bene�ts of CPfor suh problems is the presene, in most modern solvers, of very e�ient �ltering mehanismsin the form of onstraint abstrations for both lassial job shop and generalisations suh as theumulative resoure sheduling problem. Using demand-driven �ltering during searh for inte-ger solutions onstitutes a powerful deision mehanism that have also been used suessfully foroptimisation [16,8℄. However, to optimise lassial job shop problems and their umulative gener-alisations e�iently it is generally also neessary to employ quite sophistiated searh heuristis.Mixed Integer Linear Programming (MILP) is another tehnique for ombinatorial problemsolving whih have been applied to a wide variety of industrial-level problems. For shedulingproblems with unitary resoures, standard linear boolean formulations also sale very well, es-peially for problems with a lot of linear side onditions that an be exploited by modern MILPsolvers.
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2 M. Aronsson, M. Bohlin, P. KreugerFor umulative sheduling problems, however, there do not seem to exist any standard MILPformulations. For ertain lasses of problems, e.g. where all tasks have unitary resoure onsump-tion, formulations based on geometri plaement an be used [5℄. These an, as we will see, bequite e�ient for the problems they an enode.Cumulative onstraints [17℄ are well known in the CP ommunity where e�ient algorithmsbased on sweep [18℄ and/or task-intervals [19℄ are used to prune the searh spae, both as apre-proessing mehanism and on demand for variable domain redution during searh. Severalvariants of the onstraint have been desribed e.g. in [20℄.These onstraints normally restrit the umulative apaity utilisation of tasks exeutingsimultaneously not to exeed an upper bound. Capaities and apaity utilisation are normally�xed integers while the start times and durations are deision variables. Variants where theresoure onsumption of eah task is also variable and possibly onstrained by the start timeand duration our as well. In this paper we fous on the ase where the apaity and theresoure onsumption are onstant integers. We have not found this to be restritive in pratiefor pratial problems in the railway domain.Geometri plaement onstraints are related to umulative onstraints. The most ommonform is probably that of �ltering for non-overlap of retangles in the plane [21℄ whih, in theontext of sheduling, orresponds to alloation of unit apaity resoures to tasks with unit re-soure onsumption ombined with a multi-resoure sheduling problem. The resoure alloationis represented as the plaement of a a unit height retangle in the y-dimension and the start timeas the plaement of its left edge and the duration as its length in the x-dimension.In lassial umulative sheduling, there is no onept orresponding to the plaement ofthe lower edge on the y-axis, and the resoure onsumption is arbitrary. Still, the speial aseof unit resoure onsumption is of onsiderable pratial interest, and for these, the plaementformulation an be used by onsidering the number of resoures as a umulative apaity andjust ignoring the values of the y-plaement variables. Any solution to the plaement problem islearly feasible for the umulative as well.We will desribe four di�erent models, two for the plaement formulation and two for theumulative onstraint, de�ne �ltering methods for eah, note some of their omplexity propertiesand investigate solving performane for them on three separate sets of problems. The �rst twosets of problems are derived from a pratial ase in rail tra� sheduling where all the taskshave unit resoure onsumption. In the third, a set of random problems with a more generalstruture and of varying sizes and di�ulties are studied.In addition, in a fourth, empirial setion, we brie�y desribe the results of using a seletionof the desribed methods in an industrial sale rail transport sheduling problem. This problemwas what originally motivated our researh, and even though the problem has a quite speialstruture it is of great pratial importane. We onlude with a summary of our �ndings.2 Preliminaries and notation2.1 Notation for model parameters and variablesLet n denote the number of tasks (individual trains using a trak or station resoure) in theproblem and use 0 < i, j ≤ n as task indies. Let, furthermore, c denote the resoure (station)apaity limit and hi the resoure onsumption for task i. Let si denote the start time variablefor task i, bounded by an interval si ≤ si ≤ si and di the duration variable for task i, boundedby an interval di ≤ di ≤ di.



MILP formulations of umulative onstraints for railway sheduling 32.2 Maximal lique onstrutionIn umulative sheduling it is often useful to do an analysis of the parameters and bounds ofthe problem. One of the most obvious ways to do this is to onstrut subsets of tasks that anoverlap in time. In CP, this type of omputation is performed iteratively during searh to �lterthe domains or bounds of the deision variables, but it an also be used for pre-proessing inMILP formulations to �lter equations and booleans that need not be maintained by the solver.Formally, this is ahieved by onsidering the tasks of the problem as nodes in a graph andletting two tasks i and j be onneted by a link if and only if they an overlap in time. Then,all maximal liques (ompletely onneted sub-graphs) of this graph will have the property that,unless a task is already in the lique, it annot overlap all the others.This is a very useful property in umulative sheduling sine when we wish to limit the numberof simultaneously overlapping task, it is su�ient to onsider eah maximal lique separately andthe omplexity of enforing umulative onditions on the set of all tasks is often bounded by somefuntion of the sizes of the maximal liques, rather than the size of the task set itself. In pratialproblems this is often of great value, sine the majority of tasks annot be arbitrarily plaed intime. This makes the maximal liques small ompared to the total number of tasks.To onstrut the set of all maximal liques used in the models below, we use a straightforwardsweep algorithm whih has linear time omplexity in the size of the set of tasks. In the modeldesription below we will often generate a set of equations for eah maximal lique Clqk andwhere 1 ≤ nk ≤ n is the size of the k'th lique.3 Model desriptionsThe �rst two models desribed below are restrited to handle tasks with unitary resoure require-ments. The reason for this is that these are based on a retangle plaement approah whih doesnot apture the general umulative onstraint whih may be satis�ed even though no retangleplaement exists. They are, in fat, more lose to models for plaing non-overlapping retanglesof unit height onto the plane. In pratie however, these are quite useful models sine in manysituations where the umulative onstraint is used, there is an underlying problem struture ofthis type. E.g. in train sheduling, a station may be modelled as a umulative resoure thatallows a maximum number of trains to oupy the station at any one time. The type of modelproposed here allows us to also exlude the use of ertain traks for a partiular train, dependingon trak lengths or other apaity restritions, whih is not straightforward in a pure umulativemodel.The next two models apture the semantis of a general umulative onstraint with a �xedupper bound on resoure onsumption and arbitrary but �xed resoure onsumption for all tasks.3.1 Expliit unitary resoure alloation (integer formulation)This model treats eah umulative resoure as a olletion of unitary sub-resoures and expliitlyalloate these to tasks with unit resoure onsumption. This is ahieved through the use of aninteger deision variable yi for eah task i to denote the individual sub-resoure alloated to thetask. If two tasks i and j use the same sub-resoure, they must be non-overlapping in time. Themodel uses two boolean variables pij and wij for eah pair of transports i and j. pij = 1 is usedto enode that the task i ompletely preedes task j and wij = 1 that they do overlap in time,and thus must use di�erent sub-resoures.First, let us express a non-overlap onstraint: Either the end time of task i is less than orequal to the start time of task j: si + di − sj ≤ 0 or the same is true for task j in relation to task
i: si − sj − dj ≥ 0. We re�et this disjuntion in the boolean pij :
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si + di − sj − M (1 − pij) ≤ 0

si − sj − dj + M pij ≥ 0where M is any onstant large enough to dominate the equation in whih it ours. This is, ofourse, a standard formulation that ours everywhere in the literature (see e.g. [22,23℄) but howdo we proeed if we want to ount and limit the number of overlapping tasks?In the ase where we do want to allow an overlap we need an additional boolean that anelsthe e�et of the above equations. We want to do this in a way so that whenever this variabletakes the value 0, our equations will be equivalent to the ones above, and anel them ompletelyotherwise:
si + di − sj − M (1 − pij) − M wij ≤ 0

si − sj − dj + M pij + M wij ≥ 0When the two tasks do overlap, and the variable wij thus takes the value 1, we need to ensurethat the two tasks are alloated di�erent sub-resoures. We an do this by ensuring that thedi�erene between yi and yj is nonzero:
yi − yj + M uij + M (1 − wij) > 0

yj − yi + M (1 − uij) + M (1 − wij) > 0where yi, yj are integers and the booleans uij enodes if yi < yj or the other way around, in thease where wij is 0.As noted above, it is su�ient to enfore these onditions for eah pair of tasks in the maximalliques, so that for eah lique Clqk with nk tasks, the number of integer variables will be nk,the number of booleans 3nk(nk−1)
2 and the number of equations will be 2nk(nk − 1). Note that,by sharing variables between the liques, the total numbers are signi�antly less than the sumover all liques and is, for the integer variables, bounded by n and for the booleans, by 3n(n−1)

2 .In summary, the temporal non-overlap ondition for tasks alloated the same sub-resourean (sine y-variables are integers) thus be stated in linear form as:
si − sj + di + M pij − M wij ≤ M

si − sj − dj + M pij + M wij ≥ 0

yi − yj + M uij − M wij ≥ 1 − M

yj − yi − M uij − M wij ≥ 1 − 2 Mfor all pairs i < j ∈ Clqk of tasks and eah maximal lique Clqk, where pij , wij , uij are booleansand 1 ≤ yi, yj ≤ c are integers. Note that we need to enfore the equations in the solver onlywhen the size of the lique is stritly larger then the resoure apaity.3.2 Expliit unitary resoure alloation (boolean formulation)This model is very similar to the one above but uses, instead of eah integer variable yi, c numberof booleans mik, eah being one, denoting that the task i is alloated sub-resoure k. We want toenfore the overlap ondition between two tasks i and j if and only if mik = mjk = 1 for some ki.e. if (1−mik) = (1−mjk) = 0. The equations stating the non-overlap an then be formulated:
si + di − sj − M (1 − pij) − M (1 − mik) − M (1 − mjk) ≤ 0

si − sj − dj + M pij + M (1 − mik) + M (1 − mjk) ≥ 0



MILP formulations of umulative onstraints for railway sheduling 5whih in linear form beomes
si + di − sj + M pij + M mik + M mjk ≤ 3 M
si − sj − dj + M pij − M mik − M mjk ≥ 2 Mfor all pairs of tasks i < j ∈ Clqk, for eah maximal lique Clqk, and eah 0 < k < c and where,in addition, the resoure ondition is stated:

∑

0<k≤c

mik = 1for all tasks i, i.e. essentially a set partitioning formulation.Note that the number of booleans and overlap equations now inrease by a fator of 2c tobeome cnk(nk −1) where nk is the size of the lique and c the resoure apaity. The number ofresoure onditions, on the other hand, now depends linearly on the produt of cnk. We wouldexpet this model to be reasonably e�ient when c is small in omparison to the lique size nk. If,on the other hand these parameters are of omparable size, the number of booleans is e�etivelyubi. The advantage of this type of model is that the modern MILP-solvers tend to treat pureboolean formulations more e�iently than general MILP formulations.A similar model for a tra� (re)sheduling problem was presented in [5℄ as part of a largermodel apturing several more aspets of a train (re)sheduling problem but this type of modelis probably more or less a standard formulation.3.3 Min on�iting sub-lique modelThis model aptures the lassial umulative onstraint more exatly than the ones proposedabove in the sense that tasks may have arbitrary resoure onsumption and that there is nonotion of sub-resoures.The idea behind this model is that for eah maximal lique with tasks of su�ient umulativeresoure onsumption, there exists a (possibly large) number of minimal sub-liques suh thatthe sum of the resoure onsumptions of the involved tasks exeeds the resoure apaity c. Theyneed to be minimal in the sense that removing any single element would make the sum of resoureonsumptions of the remaining tasks less than or equal to the resoure apaity. This means thatwe an limit the number of atual overlaps in the sub-lique to be stritly less than the numberof pairs in the (minimal) lique itself.Sine eah larger sub-lique that an ontribute to a violation of the onstraint an do soonly by violating a minimal sub-lique of itself, it is su�ient to state the resoure onditionsfor the minimal sub-liques. We will use the same formulation for the non-overlap ondition asbefore, i.e.
si + di − sj + M pij − M wij ≤ M

si − sj − dj + M pij + M wij ≥ 0for all i < j ∈ Clqk and eah maximal lique Clqk. We may now ount and limit the number ofoverlaps in eah minimal sub-lique as follows
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6 M. Aronsson, M. Bohlin, P. Kreugerstates the minimality ondition and the onlusion limits the number of overlap variables thatan take the value one to be stritly less than the number of pairs in the minimal sub-lique.Note that the tests for eah potential sub-lique an be done when generating the equations andonly the linear sum expression ∑

i≤j∈Mn wij ≤
(

|Mn|
2

)

− 1 needs to be enfored by the solver.In this model, for eah lique Clqk with nk tasks, both the number of booleans and numberof overlap equations will be nk(nk − 1). The number of minimal sub-liques and orrespondinglique equations, for a given max lique, however, depends both on the lique size |Clqk|, theresoure apaity c and the distribution of resoure onsumption for the involved tasks, and mayin the worst ase be exponential in the �rst two parameters. E.g. if the resoure onsumption ofall tasks is one, the number of minimal sub-liques will be the number of sub-liques of a givensize c, i.e. (

|Clqk|
c+1

). Even though modern IP-solvers are muh more sensitive to the number ofbooleans than to the number of equations, this is learly a disadvantage of this model.Even worse, the number of sub-liques to be tested for minimality is always exponential in thelique size. This means that the algorithm generating the equations should be very sensitive toinrease in lique size. Still, for a typial randomly generated problem onsisting of 300 tasks ona single resoure, arbitrary resoure onsumptions up to a resoure apaity of 5, max/averagelique size of 26/18 and 139 separate liques, all 9 752 equations are generated in about 170seonds on a 1.6 GHz i686 laptop, so the �ltering does sale to pratial problem sizes and, formany large sale pratial problems, the method performs, as we will see in setion 4, very well.3.4 Start point lique height sum modelThis model is based on the observation that for eah start point of a task, it su�es to measureand limit the resoure onsumptions of the other tasks that are possibly ative at that point.For eah task i of a maximal lique with elements of su�ient size to generate a on�it,onsider eah other task j in the lique that has an earliest start point less than or equal to thelatest start point of task i and a latest end point greater than the earliest start of i. Sine onlythese an overlap task i we onstrut for eah suh task a boolean variable wij whih will take thevalue 1 if and only if the start of task i falls within the duration of task j, i.e. if sj ≤ si < sj +dj .In order to do this, onsider �rst the situation where this is not the ase, i.e. where either sj > sior si ≥ sj + dj . Enode this disjuntion with a boolean pij suh that:
si − sj − M (1 − pij) < 0

si − sj − dj + M pij ≥ 0and use wij = 1 to enode the anellation of these equations as follows:
si − sj + M pij − M wij < M

si − sj − dj + M pij + M wij ≥ 0.where pij , wij are booleans and the strit inequality in the �rst equation would in a pure MILPformulation be handled by the addition of a suitably small ǫ on the RHS.Now, for eah element i in eah lique Clqk onstrain the salar produts: ∑

j∈Clqk\{i} hjwijto be less than or equal to the resoure apaity c minus the resoure onsumption hi of the task
i:

∀i ∈ Clqk

∑

j∈Clqk\{i}

hjwij ≤ c − hifor all maximal liques Clqk where wij are booleans. The number of lique equations is linear inthe (maximal) lique size, but sine the overlap equations are no longer symmetri, these must



MILP formulations of umulative onstraints for railway sheduling 7be stated for eah ordered pair of tasks in the lique. This means that the number of booleansand overlap equations will both be 2nk(nk−1), whih is twie as many as in the model of setion3.3.4 Empirial �ndingsThis setion reports trial runs of the proposed methods on a number of di�erent problems.Most of the problems are derived from an appliation in train sheduling, but sine these onlyhave tasks with unitary resoure onsumption, we have also evaluated the methods on a set ofrandomly generated problems where the resoure onsumption varies up to the resoure apaity.Two sets of examples are single resoure problems while the other two are more realisti examplesonsisting of trains using several resoures in �xed sequenes, job shop style.4.1 Single resoure unitary resoure onsumption examplesWe have evaluated all four models on a set of problems derived from the domain of train timetablegeneration. More results on the full problem is presented in setion 4.4 below. In this setion, weonsider a single resoure at the time and present results for a number of representative stationresoures of varying size.In table 1 the problem parameters and properties are summarised. We note that all problemsTable 1. Problem statistis for a seletions of stations in the train problemStation KS1 FA TÄL LLN MH ÖB LÅÖ GDÖ SK HPBGCapaity 1 2 2 2 3 3 3 4 5 10Tasks 471 711 1000 1000 684 907 1000 717 804 1391Cliques 246 319 520 591 194 356 489 120 63 43Max/Avr lq size 7/3 7/4 8/5 9/5 7/4 8/5 9/5 7/5 8/6 14/11are fairly large in terms of number of tasks but sine the problems were generated by introduinga �xed amount of slak (±15 minutes) in a given feasible solution, the number of potentialon�its and hene lique sizes is relatively small. We would argue that this is a quite ommonsituation in many large sale pratial problems, and as shown in setion 4.4, methods to solvesuh problems an ertainly be put to very good use. Here we try to show that the methodswe have desribed are in fat very good at exploiting this type of problem struture and salesurprisingly well onsidering that only default settings of the CPLEX solver were used to produethe solutions.Table 2 gives the number of equations, booleans and integers for eah of the four models andrun-times for CPLEX 9.0 on a single ore 2.6 GHz i686 Xenon proessor. In addition, the timetaken to generate the equation sets for eah of the models is given in the last four rows. Theshort names of models used in the table are �MC� for the �Min on�iting sub-lique model�of setion 3.3, �SC� for the �Start point height sum model� of setion 3.4, �RB� for the booleanformulation of the �Expliit resoure alloation model� of setion 3.2 and �RI� for the integerversion presented in setion 3.1.We note that the MC model is always best in terms of CPLEX exeution time but that forsome of the larger problems, the time to generate the equation set inreases the total time tosolve the problem signi�antly. Just adding the times together does not neessarily tell the whole



8 M. Aronsson, M. Bohlin, P. KreugerTable 2. Solution statistis for a seletion of stations in the train sheduling problemParam. Method(s) KS1 FA TÄL LLN MH ÖB LÅÖ GDÖ SK HPBGBools MC 1 588 3 108 6 532 6 666 2 416 4 820 6 448 2 040 1 644 2 780SC 3 175 6 216 13 054 13 319 4 810 9 580 12 882 4 080 3 249 5 403RB 1 231 2 832 5 166 5 239 2 663 4 717 5 906 2 516 2 227 3 680RI 2 382 4 662 9 798 9 999 3 624 7 230 9 672 3 060 2 466 4 170Integers MC, SC, RB 0 0 0 0 0 0 0 0 0 0RI 437 639 950 953 485 769 894 374 281 229Eqns. MC 2 382 4 800 11 842 12 067 3 204 8 146 11 660 2 432 1 863 4 185SC 3 964 7 532 15 711 16 342 5 700 11 451 15 486 4 727 3 632 5 801RB 2 025 6 858 14 014 14 285 7 733 15 229 20 238 8 534 8 501 28 029RI 3 176 6 216 13 064 13 332 4 832 9 640 12 896 4 080 3 288 5 560Solve (s) MC 0.03 0.29 1.23 1.54 0.09 0.34 0.64 0.06 0.06 0.25SC 0.14 11.16 45.07 38.04 0.73 6.42 14.00 0.20 0.18 0.39RB 0.03 1.06 3.18 11.26 1.22 5.04 13.23 1.90 0.73 5.08RI 0.04 3.08 23.89 22.66 0.58 1.78 17.93 0.51 0.39 1.70Gen. (s) MC 0.17 0.69 2.42 2.52 0.63 2.47 3.87 0.54 0.47 10.86SC 0.30 0.70 1.71 1.93 0.48 1.20 1.74 0.45 0.34 0.82RB 0.17 0.51 1.09 1.13 0.55 1.06 1.51 0.61 0.59 1.73RI 0.15 0.35 0.69 0.71 0.27 0.51 0.70 0.24 0.20 0.35story either, sine the time to generate the equations may still be small in omparison with thesolver time for e.g. problems with several distint resoures. We will next onsider suh a ase.4.2 Multiple resoure unitary resoure onsumption exampleIn this setion we explore the models on a more omplex sheduling problem derived from thesame domain as those above. In this ase we extrated all the tra� through an area around thetown of Hässleholm in southern Sweden. The area onsists of 21 distint resoures of whih 12 areunitary (trak) resoures, 2 are large stations with apaities of 24 and 16 respetively and therest are smaller stations and trak segments with a apaity of either one or two. Starting from afeasible timetable onsisting of 5972 individual tasks, we reonstruted the preedene relationsfor all the jobs (trains) and relaxed the start times of all tasks to slak sizes of 50, 70 and 90minutes respetively. The resulting problem properties and run time statistis is summarised intable 3. For eah problem, the resulting number of liques, the maximum and average lique sizeis given and then, for eah model, the number of booleans, integers and equations generated andrun time to produe an optimal solution is given. The last olumn gives the time to generate theequations for this experiment.For all problems the MC method is again learly the best, even if we inlude the time takento generate the equations.4.3 Single resoure arbitrary resoure onsumption examplesTo test and ompare the two models that e�etively handle tasks with arbitrary resoure on-sumption we generated a set of random problems with di�erent number of tasks, upper bounds onlatest ompletion and slak. For eah suh problem size we generated 10 problems and attemptedto solve eah with the two methods with a time limit of 15 minutes.
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Table 3. Problem and solution statistis for the 21 resoure problemSlk Clqs Mx Av Method Bools/Ints Eqtns Solv Tm Gen Tm50 2 538 10 2.64 MC 18 766/0 32 737 5.14 2.93SC 37 404/0 70 071 25.62 5.46RB 14 365/0 30 946 6.08 2.78RI 28 149/4 244 42 284 20.16 2.3570 2 652 13 3.41 MC 28 196/0 47 802 11.27 4.65SC 56 173/0 101 126 154.22 9.32RB 19 553/0 42 733 36.01 3.89RI 42 294/4 527 61 144 73.64 3.3090 2 672 15 4.06 MC 36 280/0 61 514 22.64 6.67SC 72 404/0 127 937 252.87 13.63RB 23 677/0 52 382 78.55 5.07RI 54 420/4 588 77 312 134.69 4.24

Table 4. Run times for a set of random problems with varying resoure onsumptionClq Sz MC SCTasks Cpt End Slak Mx Av Failed Avr rnTm Failed Avr rnTm20 3 50 10 7 3 0 0.01 0 0.0215 9 4 0 0.05 0 0.2320 10 5 0 4.41 1 71.0625 14 7 2 60.10 6 115.3330 14 7 2 101.01 6 44.2335 13 8 3 183.02 9 483.9840 13 9 4 136.71 7 379.6645 16 9 6 297.42 9 78.7150 17 11 5 152.75 10 -30 3 75 10 8 4 0 0.05 0 0.5615 10 4 0 28.73 2 4.8520 10 6 2 52.94 6 150.4125 12 7 1 233.90 7 268.8530 14 7 8 21.70 10 -35 16 8 9 277.75 10 -50 3 150 10 9 3 0 2.46 0 13.2515 8 4 0 11.68 1 37.0120 12 5 5 141.06 9 316.9225 12 6 7 210.24 10 -



10 M. Aronsson, M. Bohlin, P. KreugerEah row in table 4gives the number of tasks, the apaity of the resoure, the latest end timeand the maximum slak size of the problem lass and reports the maximum and average liquesizes for the ten generated problems. For eah model MC and SC, we then give the number ofproblems (out of 10) we failed to solve in the allotted time (15 minutes) and the average solverrun time for the problems were we did manage to �nd and prove the optimal solution.All the problems were fairly tight, with the sum of task surfaes generally overing between85 and 100% of the resoure area. Slak sizes were also randomly generated from a given (non-optimal) solution but limited by a maximum time window. These properties make these examplesquite di�erent from those from the train domain that onsist of huge amounts of tasks but withsmall slak sizes.We an see again that the methods exploit the given problem struture very well but thatperformane degrade quikly as the lique maximum sizes inrease above around 10. The liquemaximum and average size are learly funtions of the slak in the start time of eah task.The larger the slak, the more tasks potentially overlap whih is preisely what the lique sizemeasures.One more, the MC model is learly the best in terms of run time of the solver and in thenumber of solutions proved optimal. The aumulated time to generate the equations for eahlass of problems was in this experiment small (< 4 seonds) in omparison with the solver runtime and, somewhat surprisingly, very similar for the two models, even for the more di�ultproblems.To explore the relative saling of the two methods with respet to equation generation/�lteringtime more losely, we also studied the e�et of inreasing the slak for a set of larger randomlygenerated problems. We �xed the number of tasks to 200, the latest end time to 600 and theresoure apaity to 5. Plotting only the time to generate the equations against the maximumslak for the two models, yielded the graph in �gure 1. Eah entry in the plot represents the

Figure 1. Time in seonds to generate the equations for the two models (MC=squares,SC=diamonds) against inreasing start time slak sizemean of 10 random problems of eah slak size, from 10 to 80.



MILP formulations of umulative onstraints for railway sheduling 11Here the exponential growth for the MC model is more learly visible but already for a slakof 60, typial max/average lique sizes are around 20/15 and the number of booleans for SC isabout 9000. For problems of this size the solver time ompletely dominates the total time. Goingup to even larger liques, i.e. above max/average 30/20 , the generator (a Prolog program) runsout of memory for MC, so this method is no longer an option. The value of SC would still haveto be questioned for problems of this size sine the solver would most likely spend hours andprobably days, to �nd solutions in suh ases. However, it may still be of value for other types ofproblems, though at this point we have not found a way to haraterise suh a lass of problems.4.4 Large sale real world appliationAll the models desribed in this in these papers were originally developed as alternatives toan earlier CP-based sheduling system for train timetable generation [24,4,25℄ but for the fullsize version of this problem we have thoroughly investigated only the MC model of setion 3.3.The test runs were performed on a number of problems seleted from the real train timetablegeneration problem of the Swedish rail system for two onseutive years, 2004 and 2005.One set of problems was extrated from the atual timetable for 2004 and then relaxed withrespet to departure times. Traks are onsidered unitary resoures exept in the ase of singletrak lines whih aommodate trains in both diretions (see [4℄ for details) while stations weremodelled as umulative resoures aommodating from 2 up to some 20 simultaneous trains.Inluded in this set was a large area around the most important shunting yard in Sweden,Hallsberg. This problem onsists of 175 traks and 146 stations, 2 821 trains and around 60 000tasks. The start time for eah task was relaxed ±15 minutes from a given solution and preedeneand resoure onstraints were generated, resulting in a very large problem but where the size ofeah individual lique was fairly small. Finding a feasible solution to this problem with CPLEX9.0 took about 70 seonds on IBM Thinkpad T42 with a single ore 1.8 GHz i686 proessor. Aseond smaller problem generated in the same way, onsisting of some 24 000 tasks, was solvedin 27 seonds on the same mahine.A seond set of problems was extrated from the apaity requests from the various railtra� operators for the following year. Sine the apaity requests ome from several di�erentand unrelated soures we typially have many unresolved resoure on�its at the start of theplanning proess. For this problem we again introdued a slak of ±15 minutes for the start timeof the stated requirement. For one sub-problem onsisting of some 15 000 tasks and with 149unresolved on�its, a partial solution with only 2 remaining on�its was generated in about
100 seonds.For the problem in the area around Hallsberg in this set we also tried allowing the system tointrodue new low priority resoure on�its1 where it would help to eliminate the 137 originalhigh priority on�its. In this ase we introdued a smaller slak of ±5 minutes. All high priorityon�its were eliminated in 40 seonds of exeution time at the ost of introduing only one newlow priority on�it.The largest single problem we approahed onsists of most of the tra� in the northern partof the ountry, with 3 643 trains, almost 199 620 tasks on 661 traks and 611 stations. Initiallythe data ontained 1 030 high priority on�its. Running CPLEX 9.0 on a faster 2.6GHz Xenonproessor for about 600 seonds eliminated all high priority on�its and introdued 6 new lowpriority on�its. Running the solver for several days on this problem we were able to prove thatno solution exists with less than 4 suh low priority on�its.1 i.e. between ertain argo trains for whih the unertainty in atual arrival times and tolerane forsmaller delays was larger.
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