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Abstract
Mesh optimization of 2D and 3D triangulations is used in multiple applications extensively. For
example, mesh optimization is crucial in the context of adaptively discretizing geometry, typi-
cally representing the geometrical boundary conditions of a numerical simulation, or adaptively
discretizing the entire space over which various dependent variables of a numerical simulation
must be approximated. Together with operations applied to the vertices the so-called edge or
face swap operations are the building block of all optimization approaches. To speed up the
optimization or to avoid local minima of the function measuring overall mesh quality these swaps
are combined to generalized swap operations with a less local impact on the triangulation.

Despite the fact that these swap operations change only the connectivity of a triangulation,
it depends on the geometry of the triangulation whether the generalized swap will generate
inconsistently oriented or degenerate simplices. Because these are undesirable for numerical
reasons, this paper is concerned with geometric criteria that guarantee the generalized swaps for
a 3D triangulation to yield only valid, non-degenerate triangulations.
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1 Introduction

Triangulations of points in 2D space for a mesh of triangles or points in 3D space for
a mesh of tetrahedra are crucially important for numerous applications encountered in
scientific and engineering application, including numerical simulation, shape approximation,
or visualization. In scattered data approximation [15, 8, 20] 2D triangulations are used
to define a piecewise linear coarse approximation of a dense data set, assigning a “height
value” for every vertex. This technique can also be used for image compression [5, 4, 21, 18]
and video compression [19, 17]. For reverse engineering [12, 9, 6, 1], the 2-manifold surface
to be reconstructed is approximated by a 3D triangulation that contains no tetrahedra.
For mechanical engineering and physical simulations [24, 14], 3D triangulations are used as
meshes for finite element methods.

For all of these applications the triangulation needs to be optimized with respect to
an application-dependent cost function measuring mesh quality based on a multitude of
proper mesh quality variables, including, for example, point distribution, approximation
error [7, 18], triangle shape [10], dihedral angles [14], etc. The optimization process is usually
based on simple, local changes in the triangulations such as repositioning of vertices [15],
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insertions and removal of vertices [7, 11] and edge and face swaps [22]. While the first of these
operations change geometry and connectivity of the triangulation the swaps change only
the connectivity of a triangulation. To speed up the optimization or to avoid local minima
during mesh optimization multiple edge and face swaps are combined to generalized swap
operations that change the connectivity of more than three tetrahedra of the triangulation
[13, 25, 23, 17], see Section 2.

However, it depends on the geometry of the triangulation if a generalized swap will
generate flipped or degenerate simplices. We present in this paper geometric criteria that
guarantee that a generalized swap operation in a 3D triangulation will generate only valid,
non-degenerate triangulations.

2 Related Work

In general, a swap operation replaces d-dimensional simplices of a triangulation (d ≥ 1) by
other simplices. It usually affects only a local area of the triangulation, and changes the
connectivity of the triangulation without changing the number or position of the vertices.

Lawson [16] was was among the first scientists studying and publishing swap operations
systematically. He showed that d + 2 points in d dimensions, which do not all lie in a
hyper-plane, have either one unique triangulation T or two possible triangulations T1 and
T2. Which case happens depends on the vertex positions, see Figure 1 for the 2D case. In
the latter case, T1 and T2 differ only in connectivity and the transformation from T1 to
T2 is called swap operation s1→2(T1) = T2. The opposite transformation is s2→1(T2) = T1.
Because s1→2 ◦ s2→1 = s2→1 ◦ s1→2 = id, s1→2 and s2→1 are inverse operations.

a
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b c
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c

dddd
s1→2

s2→1

Figure 1 Triangulations of four points in the 2D case.

If T1 is a subset of a larger triangulation T , the swap operation can be applied by replacing
only the simplices of T1 with those of T2, and leaving all simplices of T unchanged, i.e.,
T ′ = (T \ T1) ∪ T2. Note that the subset T1 has to be a triangulation, i.e. it has to fill the
convex hull of its vertices, and must be convex.

Additionally to these basic swaps, one can construct generalized swap operations that
replace a set of simplices C of the triangulation by a different set of simplices C ′. Thus, C
and C ′ are not required to cover the convex hull of their vertices. Since the generalized swaps
are usually more powerful, they can lead to a good triangulation with less swap operations,
but are often less efficient.

One way to construct a generalized swap operation is to combine a sequence of basic
swap operations to a so-called composed swap operation. For the 2D case Yu et al. [25] use a
combination of two edge swap operations. If a simple edge swap does not reduce the cost
function, they swap the edge and one of its adjacent edges. Thus, the affected faces do not

Chapte r 3



32 Generalized Swap Operation for Tetrahedrizations

2−2 swap

2−2 swap

IV.bIV.a

3−2 swap

2−3 swap

a
a a

aaa

a

b

b b

bbbb

c

c c

c

cc
c

d

d d

d
dd

d

e

e e

eeee

I. II.a II.b III.

V.

Figure 2 The different settings of five points in the 3D case.

need to form a convex polygon for the composed swap operations. Using the composed swap
operations can improve the optimization results significantly.

Concerning the 3D case, the set of swap operations is larger and more varied than in
the 2D case. Again, we can categorize them into basic swap operations and composed
swap operations. According to Lawson [16], there are five different settings of five points
a, b, c, d and e in 3D space, only two of which have two different triangulations and therefore
provide swap operations, see Figure 2. If three points are collinear, or four points a, b, c, d are
coplanar with d ∈ conv(a, b, c), or e ∈ conv(a, b, c, d) there is only one possible triangulation,
see Figures 2 I., III., and V. If exactly four points are coplanar and form a convex quadrilateral
q there are two possible triangulations with flipped diagonals of q, see Figure 2 II. Because
the triangulation consists of two cells before and after the swap, the swap is called a 2-2
swap. For the most general case in which all five points are corners of conv(a, b, c, d, e) there
are also two possible triangulations, see Figure 2 IV. Because this swap replaces three cells
by two and vice versa, it is called a 3-2 swap or 2-3 swap, respectively.

When applied to a subset of a triangulation T , the 2-2 swap is only possible if the two
faces {a, b, d} and {b, c, d} are border faces of T . If they are interior faces, the incident two
cells also have to be swapped, see Figure 3. This leads to the 4-4 swap, which replaces four
cells with four other cells.

In 3D also a combination of basic swap operations can be more powerful. Joe [13]
systematically analyzed the possible settings. Every face of a triangulation is assigned to nine
different categories, describing their local setting and their status of being transformable by a
basic swap operation. He proposes a set of composed swap operations to transform faces that
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Figure 3 The 4-4 swap is used if the faces of the 2-2 swap are no border faces.

are initially not transformable, by first swapping adjacent faces. For every composed swap
operation, he lists the cells that are removed and created. From this list, he provides criteria
in [13] to compute the change of a cost function c resulting from each of the operations, if c
is the minimum of the costs of the individual cells.

Another class of composed swap operations is the class defined by the generalizations of
the 3-2 and 2-3 swaps, see [24, 3].

Generalized 3-2 swap (G32) A generalized 3-2 swap (G32) can be applied to an edge e =
{a, b} with n ≥ 3 incident cells C = {c1, . . . , cn}, with ci = {a, b, vi, vi+1} and vn+1 ≡
v1, see Figure 4 (left). The loop (v1, . . . , vn) is split into a set of n − 2 connected
faces F = {f1, . . . , fn−2}. Note that the choice of F is not unique. G32 replaces the
edge e with the faces F , where the n cells C are replaced by the 2(n − 2) cells C ′ =
{c′a,1, c

′
b,1, . . . , c

′
a,n−2, c

′
b,n−2} with c′a,i = fi ∪ {a} and c′b,i = fi ∪ {b}.

Generalized 2-3 swap (G23) We say a face f = {v1, v2, v3} is sandwiched between vertices
a and b, if the two cells incident to f are c1 = {a, v1, v2, v3} and c2 = {b, v1, v2, v3}. A
generalized 2-3 swap (G23) is applied to a set F = {f1, . . . , fn−2} of faces, which are
sandwiched between two points a and b, see Figure 4 (right). A new edge e = {a, b}
is inserted into the triangulation, and the border edges of F are connected to the new
edge e to form the new cells. Let C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,n−2, c

′
b,n−2} be the set of cells

incident to the faces c′a,i = fi ∪ {a} and c′b,i = fi ∪ {b} of F , and (v1, . . . , vn) be the loop
of vertices defined by the border edges of F . G23 replaces the faces of F by the edge
e = σ{a,b}, and the 2(n− 2) cells of C ′ are replaced by the n cells C = {c1, . . . , cn}, with
ci = {a, b, vi, vi+1}, and vn+1 ≡ v1.

G23 is the inverse of G32. Since the choice of faces is not unique in either direction,
applying the one swap operation after the other leads to the start triangulation only if for
both swaps the same faces are chosen. Also note that the 2-3 swap is a special case of G23,
the 3-2 swap of G32, and the 4-4 swap a special case of G23 and G32.

The execution of G32 and G23 can result in invalid triangulations. In Sections 4 and 5 we
discuss necessary and sufficient geometric conditions to ensure the validity of the resulting
triangulation. Shewchuk [23] notes that these swaps can be replaced by a series of 2-3 and
3-2 swaps, where the intermediate triangulations are topologically correct, but may contain
degenerate or inverted cells. In Section 6 we show that there is always a sequence of 2-3, 3-2,
and 4-4 swaps to replace a G23 or G32 swap without degenerate or inverted cells.
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Figure 4 The generalized 3-2 and 2-3 swaps.

3 Notation

In order to define the generalized swap operation in terms of connectivity changes and
associated geometric conditions, we first adjust our notation properly.

A 3D triangulation T = (V, E ,F , C) (tetrahedrization) consists of a set of vertices V,
edges E ⊂ V2, faces F ⊂ V3 (triangles), and cells C ⊂ V4 (tetrahedra). Thus, an edge is
a pair of vertices, a face a triple of vertices, and a cell a quadruple of vertices. All these
entities are ordered such that T is an oriented simplicial 3-complex, where the edges of
adjacent faces and the faces of adjacent cells are order reversely. In this case, we call T a
valid triangulation. We will use set operations to define new faces and cells, i.e., for v1 ∈ V,
e = (v2, v3) ∈ E , f = (v2, v3, v4) ∈ F and c ∈ C we define

e ∪ {v1} = (v1, v2, v3) ∈ F ,
f ∪ {v1} = (v1, v2, v3, v4) ∈ C

and

e ∈ f ⇐⇒ (v2, v3) is a sub-tuple of f,
f ∈ c ⇐⇒ (v2, v3, v4) is a sub-tuple of c.

While V, E , F , and C describe only the connectivity of the triangulation, a geometric
realization of T is defined by associating a point v ∈ R3 to every vertex v ∈ V . The geometric
realizations of an edge e ∈ V2, a face f ∈ V3, or a cell c ∈ V4 are then defined as the convex
hull of the geometric realizations of their vertices, and are also denoted in boldface letters e,
f , and c, respectively. Furthermore, for a set M of edges, faces, or cells, we denote by M the
union of the geometric realizations of the elements of M . Throughout this paper, geometric
realizations of elements of a triangulation are denoted by boldface letters.
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We say a valid triangulation T is consistently oriented, when the geometric realizations
of all cells have the same geometric orientation. The orientation of a cell induces a notion
of orientation on all of its contained k-sub-simplices for k = 1, 2. A k-sub-simplex is called
positively oriented if it is positively oriented in the k-dimensional hyperplane bounding the
enclosing (k + 1)-sub-simplex with outward pointing normal. This means in particular, that
all faces of a cell are positively oriented with respect to the half-plane bounding the cell with a
normal pointing to the outside of the cell. If the vertices of a cell are not affinely independent,
it is called degenerate, and if a cell or any of its k-sub-simplices are not positively oriented,
we call it inconsistently oriented.

Border faces are faces of a triangulation T that are incident to only one cell in T , all
other faces are called inner faces. Analogously, border edges are incident to only one inner
face, all other edges are called inner edges The border of a triangulation T is the set of all
its border faces. If T is a valid, consistently oriented triangulation, the geometric realization
of its border is a 2-manifold.

The boundary ∂S of a subset S of a manifold M are the points in S for which every ε-ball
in M contains points in M \ S. Note that the term border is an attribute of the connectivity
of a triangulation, whereas boundary is a property of its geometric realization.

We need to provide some definitions concerning spherical projections, which we will use
to establish geometric conditions for allowable swap operations.

I Definition 1. The spherical projection of a point p ∈ R3 onto the sphere Sq with center
q ∈ R3 and radius r is defined as

Πq(p) = q + r(p− q)/‖p− q‖2, p 6= q.

A projection of a set of points P ⊂ R3 \ {q} is the set of the projected points,

Πq(P ) = {Πq(p)|p ∈ P}.

Some properties of the spherical projection (without proof) are:
If P is a line, Πq(P ) is either two antipodal points (for q ∈ P ), or a half great circle (for
q /∈ P ) of Sq.
If P is a plane, Πq(P ) is either a great circle (for q ∈ P ), or an open half sphere (for
q /∈ P ) of Sq.
If P = conv(p1,p2,p3) is a triangle and the plane defined by P does not contain q,
Πq(P ) is a spherical triangle, bounded by the projection of the edges Πq(conv(p1,p2)),
Πq(conv(p2,p3)), Πq(conv(p3,p1)), which are segments of great circles of Sq.

4 Geometric Conditions for G32

For the geometric conditions to be satisfied for a G32-swap as defined in Section 2 we have
an edge e = (a, b) with n incident cells that is swapped. The triangulation before and after
the G32-swap is denoted by T and T ′.
I Condition 1. The triangulation T = (V, E ,F , C) is valid, and all cells of T have positive
orientation.
I Condition 2. The edge e is an inner edge of T , i.e., every face f incident to e is incident to
exactly two cells cf,1 6= cf,2.
Note that the last condition implies that e is not on the border of T . Furthermore, these
conditions induce an order of the faces incident to e.
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I Lemma 2. All faces containing e can be ordered to form a cyclic sequence G = (g1, . . . , gn),
i.e., the index i = 1, . . . , n of gi is understood modulo n. Furthermore, the dihedral angles θi

between gi and gi+1 (in the direction a to b) are in the interval (0, π), and sum to 2π.

Proof. Due to Condition 2, a face g = (a, b, v) incident to e is incident to two cells cg,1, cg,2.
Both have two faces incident to e, one of the two is g, the other ones are g′1 and g′2, respectively.
The successor of g is the face g′k of cell cg,k on the positive side of g (in the direction a to b),
k = 1, 2. The predecessor of g is the other face. Due to Condition 2 this relation determines
a cyclic successor-graph without branches.

The dihedral angle θi between a face gi and its successor gi+1 is the dihedral angle at e
of the cell that contains both faces. Therefore, 0 < θ < π, because otherwise the cell would
be inverted or degenerate, contradicting Condition 1.

Since the sequence of faces is cyclic, it surrounds e. It can only cycle exactly once around
e, because otherwise cells between the faces would intersect in their interior, which contradicts
Condition 1. The sum of the dihedral angles between the faces is therefore 2π. J

We denote the cell between gi and gi+1 as ci, and the third vertex of gi as vi. Thus,
Lemma 2 induces also a cyclic order on the cells C = (c1, . . . , cn) and vertices V = (v1, . . . , vn)
around e. Because G32 replaces the cells of C by other cells, we call C the affected region,
and the border faces of it are given by

∂C := {(a, v2, v1), (b, v1, v2), . . . , (a, v1, vn), (b, vn, v1)},

i.e., ∂C =
⋃

f∈∂C f . The line through a and b is denoted by

l = {a + λ(b− a)|λ ∈ R}. (1)

I Lemma 3. There is a closed loop of edges B = {b1, . . . , bn} that winds around l exactly
once.

Proof. This follows from Lemma 2, where bi is the edge of ci opposite to e. J

For the sphere Sa around a contained in the convex hull of all cells containing a we
set taI = Πa(b) and denote by taO the antipodal point of taI . Let Ba = Πa(B) the spherical
projection of B onto Sa. Since Ba is a closed loop on Sa, it splits Sa into two parts Sa

I and
Sa

O, which are characterized by taI ∈ Sa
I and taO ∈ Sa

O, see Figure 5. Analogously, Sb, tbI , tbO,
Bb, Sb

I , and Sb
O are defined.

I Definition 4. A partition of B is a set F = {f1, . . . , fm} of faces fi /∈ F , where
1. all vertices of fi belong to edges of B, i.e., fi ⊂ V ,
2. all edges of fi are either edges of B or inner edges I, and
3. a. every edge of B is incident to exactly one face of F ,

b. every edge of I is incident to exactly two faces of F .

I Lemma 5. Every partition F of B has n− 3 inner edges and m = n− 2 faces.

Proof. As a consequence of Lemma 2 partitioning B is equivalent to a triangulation of a
simple polygon B′ in a plane perpendicular to l without introducing new vertices. This
polygon is the orthogonal projection of B along direction l. Since every simple polygon with
n vertices can be triangulated with n− 2 triangles (see [2]), i.e., n− 3 inner edges, the claim
follows. J
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Figure 5 Terms used in spherical projection with B in blue and Ba in green.

The partition F of B defines the cells that are created by the G32-swap. Every face
of the partition is connected to a and b to form two new cells. The set of new cells is
C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,m, c

′
b,m} with c′a,j = fj ∪{a} and c′b,j = fj ∪{b} for fj ∈ F . Note that

for n > 3 the partitions and also the G32-swap is not unique.
It can happen that C ′ contains inconsistently oriented or degenerate cells. Therefore, the

G32-swap would result in an invalid triangulation and must not be applied. Whether this is
happens depends on e and B and also on the choice of F . We call F a valid partition if all
cells in C ′ are valid.

Depending on the geometry, there are three different cases. For every case we present
an example for n = 4, so that two different partitions exist: F1 = {(v1, v2, v3), (v1, v3, v4)}
and F2 = {(v1, v2, v4), (v2, v3, v4)}. For every example, a = (0, 0, 1) and b = (0, 0,−1).
Furthermore, the x and y coordinates of v1 to v4 are (−0.3,−0.3), (0.7,−1.3), (1.7,−0.3),
and (0.7, 0.7), respectively.

Every partition is valid For every partition F , all cells in C ′ are valid. For our example, we
choose the z coordinates to be z1 = z2 = z3 = z4 = 0. Both partitions F1 and F2 are
valid in this case. Note, that every partition is valid as long as the affected region C is
convex. which is only the case if (as in this example) all vi are coplanar. But also for a
non-convex affected region all partitions can be valid.

Some partitions are invalid For some partitions, there are cells in C ′ that are inverted or
degenerate. But other partitions are valid. For a concrete example, set the z coordinates
to z1 = z2 = z3 = 0.8 and z4 = −0.8. Here, F1 is an invalid partition, because the cell
(a,v1,v3,v4) is inverted, while partition F2 is valid.

All partitions are invalid It can also happen that no valid partition exists at all. In this case,
G32 cannot be applied to e. An example for this case is z1 = z3 = 0.8 and z2 = z4 = −0.8.
Here, F1 is invalid because of the inverted cell (b,v2,v4,v3), F2 is invalid because of the
inverted cell (a,v1,v3,v4).
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These examples show that we need another condition that ensures that F is a valid
partition. Under the assumption that Conditions 1 and 2 are satisfied, we found four
equivalent formulations 3.2., 3.1., 3.3., and 3.4. for the missing condition. Will prove their
equivalence later in Theorem 11. Before we describe the missing condition in detail we need
to define the supporting plane pl(t) of a triangle t as the affine hull of its vertices.

I Condition 3.
3.1. All cells c′a,j and c′b,j have positive orientation.
3.2. Every fi has a on its positive side, and b on its negative side.
3.3. The spherical projection of the faces fi onto Sa is contained in Sa

I ∪ Ba, and the
interior of the inner edges is projected into Sa

I (for Sb analogously),

Πp(fi) ⊂ Sp
I ∪Bp, for all i = 1, . . . , n, (2)

Πp(̊d) ⊂ Sp
I , for all d ∈ I,

for p ∈ {a,b}.
(3)

3.4. The interior of the inner edges is a subset of the interior of the affected region, and
the supporting planes of all faces fi intersects the line l in the interior of e,

d̊ ⊂ C \ ∂C, for all d ∈ I, (4)
pl(fi) ∩ l ∈ e̊. (5)

I Theorem 6. If Conditions 1, 2, and 3 are met, the triangulation T ′ = (V, E ′, F ′, C′) with
C′ = (C \ C) ∪ C ′ (and E ′ and F ′ accordingly) is valid.

Proof. Due to Conditions 1 and 3.1., all cells of C′ have positive orientation. To prove that
there are no holes in C ′, we check for border faces of the cells of C ′:

The faces bi ∪ {p} for p ∈ {a, b} are border faces of both C and C ′.
The faces fj are incident to c′a,j and c′b,j , i.e., fj is not on the border of C ′.
For the faces f = d ∪ {p}, d ∈ I, p ∈ {a, b}, the edge d is incident to two f aces fj and fk,
i.e., f is incident to c′p,j and c′p,k. So, f is not on the border of C ′.

Thus, there are no new border faces, i.e., there are no holes in C ′. J

I Lemma 7. Condition 3.1. and Condition 3.2. are equivalent.

Proof. By definition, a is on the positive side of fi if and only if the cell c′a,i has positive
orientation. Furthermore, b is on the negative side of fi if and only if the cell c′b,i has positive
orientation. J

I Lemma 8. Conditions 3.1. and 3.2. imply Condition 3.3.

Proof. To prove (2) we first show that Πa(F) is a connected region on Sa that is bounded
by Ba. Then we show that taI ∈ Πa(F).

Due to Condition 3.1. a is not in F, since this would cause degenerate cells, and Πa(F)
is a connected region on Sa. For fi, fj ∈ F with common edge d ∈ I, the spherical triangles
Πa(fi) and Πa(fj) share the spherical edge Πa(d). Due to Condition 3.1. the both cells c′a,i

and c′a,j have positive orientation, so they are on opposite sides of the plane P through d

and a. Therefore, Πa(fi) and Πa(fj) are also on opposite sides of Πa(d), see Figure 6. This
implies that the interior of all inner edges of I is not projected to the boundary of Πa(F).
The same holds true for all interior points of F. Thus, the boundary of Πa(F) consists of
projections of the border edges of B. Consequently, the interior of Πa(F) is not intersected
by Ba, so Πa(F) is either completely in Sa

I ∪Ba, or in Sa
O ∪Ba.
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Figure 6 The projections of fi and fj are on opposite sides of the projection of the edge d.

Since B winds around l once, the l line intersects F in at least one face fi. Let p = l ∩ fi.
Because a is on the positive side of fi (Condition 3.2.), Πa(p) = taI . Therefore, Πa(F) ⊂
Sa

I ∪Ba. Analogously, one can show Πb(F) ⊂ Sb
I ∪Bb.

Especially, the interior of Πa (̊d) does not intersect Ba, which implies (3). J

I Lemma 9. Condition 3.3. implies Condition 3.4.

Proof. Let d ∈ I be an inner edge of F , and p ∈ d̊ be an interior point of d. Due to Condition
3.3., pa = Πa(p) ∈ Sa

I . We split Sa
I into spherical triangles by adding edges from Πa(vi) to

taI . At least one of these triangles contains pa. Let this triangle be t = (taI ,Πa(vl),Πa(vl+1)),
see Figure 7. The boundary Ba (green) is partitioned into spherical triangles (red lines),
d is (v1,v4) (blue line) and p ∈ d̊. In this case, Πa(p) is within the spherical triangle
t = (taI ,Πa(v4),Πa(v5)).

The set of points that are projected into t is defined as the intersection of the half
spaces defined by the planes spanned by a and one of the edges of t, i.e., g1 = (a, b, vl),
g2 = (a, vl+1, b), and g3 = (a, vl, vl+1), which contains the fourth point {a, b, vl, vl+1} \ gi.
The point p cannot be on the negative side of g1, g2 or g3, as this would mean that its
image is not in t. Also, it cannot be in the plane defined by a and g3, as this would mean
that it is projected to Ba.

With the same argument for Πb, we obtain the faces g4 = (b, vl, a), g5 = (b, vl+1, a), and
g6 = (b, vl+1, vl). Removing the redundant faces g4 ≡ g1 and g5 ≡ g2, we can conclude that
p is not on the negative side of g1 and g2, and it is on the positive side of g3 and g6. These
four faces define the cell ci. Thus, p ∈ C, and p /∈ ∂C, proving (4).

We still have to prove (5). Assume there exists a face f in F with {q} = pl(f) ∩ l 6∈ e̊
and, without loss of generality, λ ≤ 0. This face has at least one interior edge d ∈ I and we
chose an arbitrary point p ∈ d̊. Now, p is projected to pa which lies outside of Sa

I . This
contradicts (3) and, thus, proves (5). J

I Lemma 10. If Conditions 1 and 2 are satisfied, Condition 3.4. implies Condition 3.2.

Proof. For n = 3 we have I = ∅ and F = {f1}. Since B circles around l, there must be an
intersection of l and f1. Due to Condition 3.4., this is between a and b, and because of the
order of the vertices of f1 as induced by Lemma 2, a is on the positive and b on the negative
side of f1, and Condition 3.2. is satisfied.
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Figure 7 Sa
I is divided into spherical triangles

(red lines), one of which contains Πa(p).
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b
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vk+1

qq′
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d

Figure 8 The intersection of the extension of
segment vk to q with l is between a and b.

We now consider n > 3. The partition F contains n− 2 faces, the border B has n edges
(see Lemma 3). If every face of F had at most one edge of B, there would be at least two
edges in B left. Since no face of F can have three edges of B (otherwise B would have a
sub-cycle of three edges), at least two faces of F must have two edges of B. Let F̂ ⊂ F be
the set of faces with two edges in B.

The line l intersects either one face of F in its interior, or it intersects an inner edge of I
and therefore two faces of F on their border.

In the case that l intersects an inner edge, and the adjacent faces of F are the only two
faces in F̂ , there can be no other faces in F , due to the following: if two faces with each two
edges in B and both sharing a common inner edge, their edges in B already define a cycle.
Since B does not contain any sub-cycles, there can be no further edges in B. In this case we
have n = 4. Since the intersection of l with f1 and f2 is between a and b (Condition 3.4.),
and because of the order of the vertices of f1 and f2, a is on the positive side of f1 and f2,
and b is on the negative side. Thus, in this case Condition 3.2. is satisfied.

For the remaining case there is at least one face f in F̂ that has no intersection with l,
because otherwise Conditions 1 and 2 were violated. Let f = (vk−1, vk, vk+1). Because f
does not intersect l, θk−1 + θk < π. Thus, the inner edge d = (vk−1, vk+1) cannot cross any
other cell besides ck−1 and ck. Due to Condition 3.4., d̊ ⊂ ck−1 ∪ ck. With gk = (a, b, vk),
the intersection d ∩ gk = {q}, with q in g̊k. When extending the line segment from vk to q,
it intersects the segment e in its interior in point q′, because of (5) (see Figure 8). Since vk

and q are points in f , the line through vk and q is also in the plane of f , and so is q′. From
these considerations and the vertex order of f , it follows that a is on the positive and b is
on the negative side of f . Thus, f fulfills Condition 3.2..

Now we remove f from F , i.e., F becomes F \ {f}, B becomes (B \ {bk−1, bk)}) ∪ {d},
and I becomes I \ {d}. This new edge cycle B still satisfies Conditions 1 and 2, but has one
edge less. This procedure can be repeated until n = 3, or n = 4 and l intersects both faces in
F . J

I Theorem 11. If Conditions 1 and 2 are satisfied, Conditions 3.2., 3.1., 3.3., and 3.4. are
equivalent.
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(a) Violating Condition 5.
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(b) Violating Condition 5.

f1

f2

f3
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(c) Violating Condition 5.

f1

f2

f3
f4

f5

(d) Violating Condition 6.

Figure 9 Examples of sets F violating Conditions 5 or 6.

Proof. This follows directly from Lemmata 7, 8, 9, and 10. J

5 Geometric Conditions for G23

We use the same notation as in Section 4, i.e., F = {f1, . . . , fm} is a set of faces sandwiched
between a and b, such that F is a connected 2-manifold. The edge set B = {b1, . . . , bn} are
the border edges of F . The order of edges in B is induced by the order of boundary edges in
∂F.

The triangulation before and after the G23-swap is denoted by T ′ and T . We define the
orientation of fi so that a is on the positive side of fi. The cells incident to these faces are
C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,m, c

′
b,m} with c′p,i = fi ∪ {p} for i = 1, . . . ,m and p ∈ {a, b}. The new

edge in T is e = (a, b).
Next we define the conditions for which G23 will result in a valid triangulation.

I Condition 4. The triangulation T ′ = (V, E ′,F ′, C′) is valid, and all cells of T ′ have positive
orientation.
I Condition 5. The edges of B form exactly one simple cycle (v1, . . . , vn).

This condition ensures that the faces in F are connected via edges, that there is only one
connected component of faces, and that the faces form a bounded 2-manifold without holes.
Examples of sets F that violating Condition 5 are shown in Figures 9a, 9b, and 9c.
I Condition 6. All vertices incident to a face in F are on the border B.

Condition 6 the absence of interior vertices in F that are not part of B. Those interior
vertices would be removed by G23, but a swap may only modify the connectivity, but not add,
remove, or move vertices. Figure 9d shows an example of a set F that violates Condition 6
due to an interior vertex.

I Lemma 12. If Condition 6 is satisfied, the number of vertices in B is n = m+ 2.

Proof. If Condition 6 is satisfied, F is a partition of B. Considering Lemma 5 we can
conclude m = n− 2. Therefore, n = m+ 2. J

The G23-swap will now replace the cells C ′ by the cells C = {c1, . . . , cn} with

ci = (a, b, vi, vi+1)

and faces gi = (a, b, vi), where the index i is understood modulo n.
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I Condition 7. One of the equivalent following conditions holds:
7.1. All cells ci have positive orientation.
7.2. The dihedral angle θi between the faces gi and gi+1 (in counterclockwise direction,

seen from a in direction b) is in (0, π).

I Lemma 13. Condition 7.1. and Condition 7.2. are equivalent.

Proof. ci has positive orientation if and only if ci is consistently oriented or non-degenerate.
This is true if and only if the inner dihedral angle θi is in (0, π). J

I Theorem 14. If Conditions 4, 5, 6, and 7 are met, the triangulation T = (V, E , F , C)
with C = (C \ C ′) ∪ C (and E and F accordingly) is valid.

Proof. Due to Conditions 4 and 7.1., all cells of C have positive orientation. To prove that
there are no holes in C, we check for border faces of the cells of C:

The faces bi ∪ {p} for p ∈ {a, b} are border faces of both C ′ and C.
The faces gi are incident to ci−1 and ci, i.e., gi is not on the border of C.

Thus, there are no new border faces, i.e., there are no holes in C. J

6 Replacing Generalized Swaps by a Series of Basic Swaps

In [23] Shewchuk showed that the “multi-face removal” (equivalent to G23) and “edge removal”
(equivalent to G32) can be replaced by a series of basic 2-3 and 3-2 swaps. The intermediate
triangulations are topologically correct, but may contain inconsistently oriented or degenerate
tetrahedra.

We will show that there always exists a series of basic 2-3, 3-2, and 4-4 swaps to mimic
the effect of a G23- and a G32-swap, where all intermediate triangulations are valid. This
result shows that the G23- and G32-swaps do not add additional potential that is not already
possible with 2-3, 3-2 and 4-4 swaps. An optimization procedure like simulated annealing
should theoretically be able to find a near-optimal solution also without utilizing G23 and
G32. In practice, the convergence rate can be increased by implementing G23 and G32.

6.1 Replacing G32

Let e be an inner edge of triangulation T , B the set of border edges, and F a valid partition
of B, so that the Conditions 1, 2, and 3 for G32 are satisfied.

I Theorem 15. The same effect as the G32 swap operation of e and partition F can be
obtained by a series of either

n− 3 basic 2-3 swaps followed by a 3-2 swap, or
n− 4 basic 2-3 swaps followed by a 4-4 swap, for n ≥ 4.

Proof. We use the same arguments as in the proof of Lemma 10.
For n = 3, F consists of exactly one face f1, and the vertices of f1 circle around e exactly

once. Therefore, the conditions are satisfied to apply a 3-2 swap to e, so we can substitute
G32 by a single 3-2 swap.

For n = 4, and the single inner edge d = (vi, vi+2) with i ∈ {1, 2} intersects with e, the
quadrilateral (vi,a,vi+2,b) is planar and convex, fulfilling the conditions of a 4-4 swap. This
4-4 swap replaces e by d and the four cells of C with the four cells of C ′. Thus, the G32 swap
can be replaced by a single 4-4 swap.

If n = 4 and d and e do not intersect, or if n > 4, there is at least one face in F with
two edges in B that does not intersect e. Let this face be fj = (vi−1, vi, vi+1). As in
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the proof for Lemma 10, the edge d = (vi−1, vi+1) intersects the face gi in its interior, so
the cells ci−1 and ci fulfill the condition for a 2-3 swap. This swap removes ci−1 and ci

from the triangulation, adds c′a,j and c′b,j and a temporary new cell c = (a, b, vi−1, vi+1).
The remaining cells (C \ {ci−1, ci}) ∪ {c} together with the reduced partition F \ {fj} and
the reduced border (B \ {(vi−1, vi), (vi, vi+1)}) ∪ {d} fulfill Conditions 1–3. So, G32 can be
applied to the reduced setting. By induction, the reduced setting can be processed with
either (n− 1)− 3 2-3 swaps, followed by a 3-2 swap, or with (n− 1)− 4 2-3 swaps, followed
by a 4-4 swap. Adding the 2-3 swap to remove fj , the claim follows. J

6.2 Replacing G23

Since the G23 operation is the inverse of the G32 operation for the same partition F , G23 can
be replaced by a series of basic swaps.

I Theorem 16. The same effect as a G23 operation of a partition F sandwiched between a
and b can be obtained by a series of either

a single 2-3 swap, followed by n− 3 3-2 swaps, or
a single 4-4 swap, followed by n− 4 3-2 swaps.

Proof. While G23 replaces the cells C ′ by cells C, G32 does the inverse. G32 can be substituted
by a series of basic swap operations G32 = s1 ◦ s2 ◦ · · · ◦ sm, with m being either n− 2 (sm

being a 3-2 swap) or n− 3 (sm being a 4-4 swap), as in Theorem 15. For the same choice of
F , we have

G23 = G32
−1 = (s1 ◦ · · · ◦ sm)−1 = s−1

m ◦ · · · ◦ s−1
1 .

The inverse of a 3-2 swap is a 2-3 swap and vice versa, and the inverse of a 4-4 swap is a
corresponding 4-4 swap. We start in G23 with s−1

m , which is either a 2-3 swap or a 4-4 swap.
Then we proceed with either n− 3 or n− 4 3-2 swaps. J

7 Conclusions

We have presented different geometric conditions for generalized swap operations a 3D
triangulation. These conditions are proved to be equivalent, such that one can use that
particular condition in practice that is most appropriate given the specific needs of an
implementation. In a mesh optimization application these swap operations are used to speed
up the optimization process and to attenuate "getting stuck" in local minima.

Furthermore, we have shown that the generalized swap operations can be realized by
simple 3-2, 2-3, and 4-4 swaps, which simplifies the implementation significantly. This
decomposition of the generalized swap guarantees at the same time, that all intermediate
triangulations are consistently oriented and do not contain degenerate cells, causing numerical
problems in certain applications.

Based on these conditions, our future research plans are focused on applications of 3D mesh
optimizations, e.g., in video compressions or bio-medical and bio-mechanical simulations.
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