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Abstract
Computing the Dodgson Score of a candidate in an election is a hard computational problem,
which has been analyzed using classical and parameterized analysis. In this paper we resolve
two open problems regarding the parameterized complexity of Dodgson Score. We show that
Dodgson Score parameterized by the target score value k does not have a polynomial kernel
unless the polynomial hierarchy collapses to the third level; this complements a result of Fellows,
Rosamond and Slinko who obtain a non-trivial kernel of exponential size for a generalization of
this problem. We also prove that Dodgson Score parameterized by the number n of votes is
hard for W [1].
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1 Introduction

Complexity issues play an important role in the relatively new area of computational social
choice, especially in the area of election systems, which has applications in finance and
economics (agreement on the winner of an auction), internet search engines (agreement on
the order of web pages presented), web mining (consensus is the notion of “public opinion”),
mechanism design (agreement by participants in large networks involving autonomous software
agents), and computational biology (finding consensus in feature selection), among many
others [1, 14, 15]. The involvement of increasingly larger numbers of participants and the
increasing sophistication of the information objects of debate, have made election systems a
vital area of computer science research.
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In this paper we study the hard election problem Dodgson Score. We consider
an election in which we allow each voter to specify a complete preference ranking of the
candidates: each vote is a strict total order on the set of candidates, and a vote in an election
with three candidates could be represented as a < b < c stating that candidate a is least
preferred and c is most preferred. Given the votes that were cast in an election, we can
compare the relative ranking of two candidates a, b as follows: candidate a beats candidate b

in pairwise comparison if a is ranked above b more often than below b. A candidate who beats
every other candidate in pairwise comparison is said to be a Condorcet winner. If such a
winner exists then it must be unique, and it wins the election. But unfortunately a Condorcet
winner may not always exist, as is shown by the following election with three candidates and
three voters: a < b < c, b < c < a, c < a < b. This situation has a cyclic preference structure:
candidate a beats b, candidate b beats c and c beats a (in pairwise comparison), so there is
no candidate who beats all others. In 1876 the mathematician Charles Dodgson formulated
a rule that defines the winner of an election even if there is no Condorcet winner [11, 6].
The idea is to measure how close a candidate is to being a Condorcet winner; the candidate
who is closest then wins the election. This can be formalized as follows. The Dodgson score
of a candidate c in an election, is defined to be the minimum number of swaps of adjacent
candidates in the voter’s preference orders that have to be made to ensure that c becomes a
Condorcet winner. The candidates that have the minimum Dodgson score are the winners
of the election. Dodgson’s rule is not the only voting scheme resulting from Condorcet’s
criterion; similar schemes have been suggested by Young and Kemeny [22].

Unfortunately, Dodgson Score, Young Score and Kemeny Score and many other
election problems are NP-hard or worse, and finding an “approximate” winner of an election
is hard [10] and usually not appropriate. Thus, election problems are well-suited for parame-
terized analysis because it offers an exact result, taking advantage of natural parameters to
the problems, such as the number of votes that were cast, the number of candidates, or the
score of a candidate.

1.1 Earlier Work
Bartholdi et al. initiated the study of the complexity of the Dodgson voting scheme in 1989 [2],
when they showed that determining the winner of a Dodgson election is NP-hard. They also
proved that computing the Dodgson or Kemeny score of a given candidate is NP-complete.
The complexity of the winner problem for Dodgson elections was later established exactly;
Hemaspaandra et al. [20] showed in 1997 that this problem is complete for PNP

|| (“parallel
access to NP”).

McCabe-Dansted [21] was the first to investigate Dodgson Score using the framework
of parameterized complexity, and observed that the ILP formulation of the problem from
Bartholdi et al. [2] implies fixed-parameter tractability for the parameterization by the
number m of candidates in the election. The parameterization by the target score k was
first studied in 2007, when Fellows and Rosamond showed that k-Dodgson Score is in
FPT. The group of Betzler et al. [4, 5] independently reached the same conclusion and
obtained a dynamic programming algorithm with running time O(2k · nk + nm) where n is
the number of votes and m the number of candidates. Fellows, Rosamond and Slinko [16]
considered a generalization of Dodgson’s rule where each possible preference ranking specifies
a cost for every swap that can be made; a candidate wins the election if the minimum total
cost of making that candidate a Condorcet winner is not higher than the minimum cost of
making any other candidate a Condorcet winner. They obtained a kernel of exponential size
O(eO(k2)) for this k-Generalized Dodgson Score problem.
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The election problems Kemeny Score and Young Score have also been studied
from the parameterized perspective. The Young Score problem is W [2]-complete when
parameterized by the target score, and the same holds when using the dual of this parameter [4,
5]. The Kemeny Score problem admits several natural parameterizations that lead to
fixed-parameter tractability. Results have been found for parameters ‘number of votes’,
‘average Kendall-Tau distance’, ‘maximum range (or maximum Kendall-Tau distance)’ and
combined parameters of ‘number of votes and average KT-distance’, and ‘number of votes
and maximum KT-distance’ [3].

1.2 Our Results
The parameterized analysis of Dodgson Score by Betzler et al. [5] left two open problems
unanswered: 1) does k-Dodgson Score admit a polynomial kernel when parameterized by
the target score, and 2) is the problem fixed-parameter tractable when parameterized by the
number of votes? We answer both questions in this paper. We use the framework developed
by Bodlaender et al. [7] in combination with a theorem by Fortnow and Santhanam [18]
to prove that there is no polynomial kernel for k-Dodgson Score unless the polynomial
hierarchy collapses to the third level (denoted as PH = Σp

3), and further [9]. Our second
result is a non-trivial reduction establishing that k-Dodgson Score parameterized by the
number of votes is hard for W [1].

2 Preliminaries

In this section we formalize some notions that were introduced in Section 1. An election is a
tuple (V, C) where V is a multiset of votes, and C is a set of candidates. A vote v ∈ V is
a preference list on the candidates, i.e. a strict total ordering. For candidates a, b ∈ C the
value na,b counts the number of votes in V that rank a above b. A Condorcet winner is a
candidate x ∈ C such that nx,y > ny,x for all y ∈ C \ {x}. To swap candidate x upwards in
a vote v ∈ V means to exchange the positions of x and the candidate immediately above
it in the ranking; an upward swap operation is undefined if x is already the most preferred
candidate in the vote. For example, if x < z < w < y is a vote, then swapping x upwards
once results in the vote z < x < w < y. We say that the candidate x gains a vote on
candidate z through this swap, since this swap increases nx,z by one and decreases nz,x by
one. The Dodgson score of a candidate x ∈ C is the minimum number of swaps needed to
make x a Condorcet winner. It is not hard to verify that if x can be made a Condorcet winner
by k swaps, then this can also be done by k swaps that only move candidate x upwards.
Consult [21, Lemma 4.0.5] for a formal proof of this claim. Therefore we may also define the
Dodgson score as the minimum number of upwards swaps of x that are required to make x a
Condorcet winner.

The theory of parameterized complexity [13] offers a toolkit for the theoretical analysis
of the structure of NP-hard problems. A parameterized decision problem is a language
L ⊆ Σ∗ ×N, where an instance (x, k) is composed of the classical input x and the parameter
value k that describes some property of x. A parameterized problem L is in the class
(strongly uniform) FPT (for Fixed-Parameter Tractable) if there is an algorithm that
decides L in f(k)p(|x|) time, where p is a polynomial and f is a computable function. A
kernelization algorithm (kernel) [23] is a mapping that transforms an instance (x, k) ∈ Σ∗×N
in p(|x| + k) time for some polynomial p, into an equivalent instance (x′, k′) such that
(x, k) ∈ L⇔ (x′, k′) ∈ L and such that |x′|, k′ ≤ f(k) for some computable function f . The
function f is called the size of the kernel. Recent developments in the theory of kernelization
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have yielded tools to show that certain problems are unlikely to have kernels of polynomial
size [7]. The Dodgson Score problem is formally defined as follows:

Dodgson Score
Instance: A set C of candidates, a distinguished candidate x ∈ C, a multiset V of
votes and a positive integer k.
Question: Can x be made a Condorcet winner by making at most k swaps between
adjacent candidates?

We consider two different parameterizations in this work. When the problem is parameterized
by the number of allowed swaps k then we will refer to it as k-Dodgson Score; the other
variant considers a bounded number of votes n := |V | which we call n-Dodgson Score.

3 Kernelization Lower Bound for k-Dodgson Score

In this section we prove that k-Dodgson Score does not have a polynomial kernel unless
PH = Σp

3. To prove this result we need some notions related to parameterized reducibility.

I Definition 1 ([8]). Let P and Q be parameterized problems. We say that P is polynomial
parameter reducible to Q, written P ≤P tp Q, if there exists a polynomial time computable
function g : Σ∗ × N → Σ∗ × N and a polynomial p, such that for all (x, k) ∈ Σ∗ × N (a)
(x, k) ∈ P ⇔ (x′, k′) = g(x, k) ∈ Q and (b) k′ ≤ p(k). The function g is called polynomial
parameter transformation.

I Theorem 2 ([8]). Let P and Q be parameterized problems and P̃ and Q̃ be the unpa-
rameterized versions of P and Q respectively. Suppose that P̃ is NP-hard and Q̃ is in NP.
Furthermore if there is a polynomial parameter transformation from P to Q, then if Q has a
polynomial kernel then P also has a polynomial kernel.

We use the following problem as the starting point for our transformation:

Small Universe Set Cover
Instance: A set family F ⊆ 2U of subsets of a finite universe U and a positive
integer k ≤ |F|.
Question: Is there a subfamily F ′ ⊆ F with |F ′| ≤ k such that ∪S∈F ′S = U?
Parameter: The value k + |U |.

Small Universe Set Cover is a parameterized version of the NP-complete Set Cover
problem [19, SP5]. We need the following incompressibility result for this problem [12,
Theorem 2]:

I Theorem 3. The problem Small Universe Set Cover parameterized by k + |U | does
not admit a polynomial kernel unless PH = Σp

3.

The transformation that we shall use to prove that k-Dodgson Score does not have a
polynomial kernel (unless PH = Σp

3) is similar in spirit to the reduction from Exact Cover
by 3-sets which was originally used to show that Dodgson Score is NP-complete [2]. Let
(U,F , k) be an instance of Small Universe Set Cover. We show how to construct an
equivalent instance (V, C, x, k′) of k-Dodgson Score with k′ := k(|U |+ 1) in polynomial
time. Since the problem can be solved in polynomial time when |F| < 3, we may assume
without loss of generality that the set family F contains at least 3 sets.

The set of candidates is composed of several parts. We create one candidate for each
element u in the universe U ; we will use an element u ∈ U to refer both to the corresponding
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candidate and to the element of the finite universe, since the meaning will be clear from the
context. We also take one candidate x to use as the distinguished candidate for whom the
Dodgson score must be computed, one candidate y that will encode the fact that we must
cover the universe with exactly k subsets, and finally we use three sets of dummy candidates
D0, D1 and D2 that are needed for padding. These dummy candidates will ensure that we
can make the distance between x and y in the total orders sufficiently large, i.e. that it takes
a lot of swaps for x to gain a vote on y. We want to ensure that x beats all the dummy
candidates in pairwise comparison in the initial situation, to ensure that the dummies do not
interfere with the encoding of the set cover instance. Our three sets of dummies D0, D1 and
D2 each contain |U |+ 1 candidates. If we want to use some d ≤ |U |+ 1 dummy candidates
that rank above x in the i-th vote that we create, then we use d candidates from the set
Di mod 3; the other dummies are ranked below x. Since x beats every dummy candidate
in at least two out of three votes, this ensures that x will beat all dummy candidates in
pairwise comparison if we use at least 5 votes. Using this scheme we will from now on write
Dj to denote a set of j ≤ |U |+ 1 dummy candidates that can be used in the vote we are
constructing.

The set V of votes is built out of two parts, each containing |F| votes. Since |F| ≥ 3
this will ensure that we create at least 6 votes. Using the terminology of [2] we create a
set of swing votes corresponding to elements of F , and a set of equalizing votes that create
the proper initial conditions. We introduce an abbreviation to write down total orders: if
C ′ ⊆ C is a set of candidates, then by writing a total order a < C ′ < b we mean a total
order in which all candidates of C ′ are ranked below b and above a. The relative ranking of
the candidates in C ′ among each other is not important. We now define the two parts of the
vote set.

Swing votes. For every S ∈ F we make a vote (. . . < x < S < D|U |−|S| < y). All
candidates that are not explicitly mentioned in the construction are ranked below x in
arbitrary order. The set S in this vote represents the candidates corresponding to the
universe elements in S ⊆ U .

The swing votes correspond to the sets in the family F . Observe that it takes exactly |U |+1
switches for x to gain a swing vote on y. The name “swing vote" comes from the fact that
if x can become a Condorcet winner in k(|U |+ 1) switches, then all those switches must be
made in swing votes.

Equalizing votes. The goal of the set of equalizing votes is to create initial conditions
in which x must gain k votes on candidate y, and one vote on every candidate corresponding
to some u ∈ U in order to become the Condorcet winner. We construct the equalizing votes
so that no switches made in them will allow x to become a winner in k(|U |+ 1) steps. We do
not give an explicit construction for the equalizing votes; instead we present the conditions
that they must satisfy. It will be easy to see that such a set of votes exists, and can be
constructed in polynomial time.
1. For every candidate corresponding to an element u ∈ U , the number of equalizing votes

in which x is ranked above u is equal to the number of swing votes in which x is ranked
below u. This ensures that overall, every candidate u is ranked above x exactly as often
as below x; hence x needs to gain one vote on every u to beat it in pairwise comparison.

2. There are |F| − k + 1 equalizing votes in which x is ranked above y. Since x is ranked
below y in all swing votes, this implies that there are |F| − k + 1 votes in which x ranks
above y, and 2|F| − (|F| − k + 1) = |F| + k − 1 votes in which x ranks below y. The
reader may verify that this means that x needs to gain at least k votes on y to beat y in
a pairwise comparison.
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3. Whenever x is ranked below y, then (by inserting dummies if necessary) there are at least
|U |+ 1 candidates between x and y. This ensures that at least |U |+ 2 swaps are needed
for x to gain an equalizing vote on y.

This concludes the construction of the instance (V, C, x, k′).

I Lemma 4. If the instance (U,F , k) has a set cover of size k, then candidate x can be
made a Condorcet winner in the election (V, C, x, k′) by k′ swaps.

Proof. Suppose F ′ ⊆ F is a set cover of size k. Every S ∈ F ′ corresponds to a swing vote.
Consider the effect of swapping x upwards for |U |+ 1 steps in the swing votes corresponding
to the elements of F ′. Since there are exactly |U | candidates between x and y in every swing
vote, this means that x gains these k votes on y. Since F ′ is a set cover of U it follows from
the construction of the swing votes that we must have swapped x over every candidate u ∈ U

at least once. By the earlier observations this shows that after these k′ = k(|U |+ 1) swaps
the candidate x must be a Condorcet winner. J

I Lemma 5. If candidate x can be made a Condorcet winner in the election (V, C, x, k′)
by k′ swaps, then instance (U,F , k) has a set cover of size k.

Proof. Assume there is some series of k(|U |+ 1) swaps that makes x a Condorcet winner. By
the observations in the preliminaries we may assume that these swaps only move x upwards.
Since x needs to gain k votes on y in order to become a Condorcet winner, we can conclude
that at most |U |+ 1 swaps on average can be used for every vote that x gains over y. But
by construction it is impossible to improve over y using fewer than |U |+ 1 swaps per vote,
which shows that none of the swaps can be made in equalizing votes since there it takes at
least |U |+2 swaps for x to improve over y. It follows that the swaps that make x a Condorcet
winner in k(|U | + 1) steps must be composed of |U | + 1 swaps in k different swing votes.
Since x had to gain one vote on every candidate corresponding to u ∈ U in order to become
a Condorcet winner, we may conclude that in these k swing votes every candidate u ∈ U

was ranked above x at least once. But this shows that the sets corresponding to the k swing
votes form a set cover for U of size k, which shows that U has a set cover of the requested
size. J

It is not hard to verify that the transformation can be computed in polynomial time.
The transformation is a polynomial parameter transformation because the parameter k′ =
k(|U | + 1) of the k-Dodgson Score instance is bounded by the square of the original
parameter k + |U |. By combining Theorem 2 with Theorem 3 the existence of this polynomial
parameter transformation yields the following theorem.

I Theorem 6. k-Dodgson Score does not admit a polynomial kernel unless PH = Σp
3.

4 Parameterized Hardness of n-Dodgson Score

We now consider the parameterization by the number of votes n and show that this leads to
W [1]-hardness. We use a reduction from the following well-known problem [17].

Multi-Colored Clique
Instance: A simple undirected graph G = (V, E), a positive integer k and a coloring
function c : V → {1, 2, . . . , k} on the vertices.
Question: Is there a clique in G that contains exactly one vertex from each color
class?
Parameter: The value k.
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We give a FPT-reduction from Multi-Colored Clique to n-Dodgson Score. In
particular, given an instance (G = (V, E), c, k) of Multi-Colored Clique we construct an
instance (C ′, V ′, x′, k′) of n-Dodgson Score such that |V ′| = n = 4(

(
k
2
)

+ k).
Let V1, . . . , Vk be the color classes of G, that is, for every v ∈ Vi we have c(v) = i. For

every pair of distinct integers 1 ≤ i < j ≤ k we define Ei,j to be the set of edges with one
endpoint in Vi and one in Vj . We will assume without loss of generality that all color classes
of G have the same number N of vertices, and that between every pair of color classes there
are exactly M edges. We define the target score value k′ of the Dodgson Score instance
as k′ := ((N + 1)(Mk + 1) + 2)k + (5M − 3)

(
k
2
)
. The set C ′ of candidates is built out of five

groups.
1. We have a distinguished candidate x′ for which we need to compute the Dodgson score.
2. We use 3k′ dummy candidates, just as in the proof of Theorem 6. This allows us to

use up to k′ dummy candidates in each vote, while maintaining the property that the
candidate x′ is ranked above every dummy candidate in more than half of the votes.

3. For every color class 1 ≤ i ≤ N there are candidates ap
i for 0 ≤ p ≤ N + 2.

4. For every pair of color classes 1 ≤ i < j ≤ k there are candidates ap
i,j for 1 ≤ p ≤M + 1.

5. For every edge e ∈ Ei,j there are candidates ei, e′i, ej and e′j .
From these definitions it is easy to verify that the number of candidates is polynomial in
the size of the Multi-Colored Clique instance. We now describe the vote set. As in the
proof of Theorem 6 we will distinguish between swing votes and equalizing votes. There are
2(

(
k
2
)

+ k) votes of each type, and hence |V ′| = n = 4(
(

k
2
)

+ k) from which it follows that the
parameter n for the n-Dodgson Score instance is polynomial in the parameter k of the
Multi-Colored Clique instance.

Equalizing votes. The equalizing votes create the right initial conditions for the election.
We build the equalizing votes such that in the resulting election the distinguished candidate x′

must gain exactly one vote on each non-dummy candidate in order to win the election. We
ensure that no swaps made in an equalizing vote can allow x′ to become a Condorcet winner
in k′ steps, by ranking k′ dummy candidates immediately above x′ in every equalizing vote.
It is not hard to see that we do not need more equalizing votes than swing votes to encode
these requirements.

Swing votes. The swing votes encode the behavior of the Multi-Colored Clique
instance into the election. Every edge e gets an identification number ID(e) between 1 and
M . Since the total number of edges is M

(
k
2
)
the identification of two edges may be the same,

but we ensure that for two distinct edges e1, e2 both in Ei,j we always have ID(e1) 6= ID(e2).
Similarly we give every vertex v ∈ V an identification number ID(v) between 1 and N , and
we ensure that distinct vertices in the same color class have different ID’s. As in the previous
construction we know that only the part of the vote above x′ is relevant, so we do not show
the remainder. None of the described candidates are dummies, unless specified otherwise.
For every pair of integers 1 ≤ i < j ≤ k we make two swing votes, v1

i,j and v2
i,j as follows.

v1
i,j : x < a1

i,j < . . . < a2
i,j < . . . < a3

i,j < (. . .) < aM+1
i,j (1)

v2
i,j : x < aM+1

i,j < . . . < aM
i,j < . . . < aM−1

i,j < (. . .) < a1
i,j (2)

The gaps between consecutive candidates ap
i,j are filled as follows. For every edge e ∈ Ei,j

we insert ei, e′i, ej and e′j between a
ID(e)
i,j and a

ID(e)+1
i,j in v1

i,j . Also, we insert ei, e′i, ej and
e′j between a

ID(e)+1
i,j and a

ID(e)
i,j in v2

i,j . Notice that between any consecutive ap
i,j ’s in v1

i,j and
v2

i,j there are exactly 4 other candidates.
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For every integer 1 ≤ i ≤ k we make two swing votes, v1
i and v2

i as follows.

v1
i : x < a0

i < . . . < a1
i < . . . < a2

i < . . . < a3
i < (. . .) < aN

i (3)
v2

i : x < aN+2
i < . . . < aN+1

i < . . . < aN
i < . . . < aN−1

i < (. . .) < a2
i (4)

For every edge e with one endpoint v in Vi we add ei between a
ID(v)−1
i and a

ID(v)
i in v1

i and
we add e′i between a

ID(v)+2
i and a

ID(v)+1
i in v2

i . Having done this for every edge, we add
dummy candidates between each consecutive pair of ap

i ’s in v1
i and v2

i such that the total
number of candidates between each consecutive pair of ap

i ’s in v1
i and v2

i is exactly kM . This
concludes the construction of (C ′, V ′, x′, k′).

I Lemma 7. If G contains a colored k-clique, then x′ can be made a winner of the election
(C ′, V ′, x′, k′) in k′ = ((N + 1)(kM + 1) + 2)k + (5M − 3)

(
k
2
)

swaps.

Proof. Let C = c1, c2 . . . ck be a clique in G such that ci ∈ Vi. For each vertex ci ∈ C we
move x′ in v1

i such that x beats a
ID(ci)
i . We also move x′ in v2

i such that x beats a
ID(ci)+1
i .

For each value of i this takes exactly (N + 1)(kM + 1) + 2 swaps: we need 1 swap to move
over a0

i in v1
i and 1 swap to move over aN+2

i in v2
i , and for all N + 1 other candidates ap

i

we need to swap over the block of kM in front of them and over the candidates themselves,
resulting in (N + 1)(kM + 1) more swaps. Thus in total there are ((N + 1)(kM + 1) + 2)k
swaps in the v1

i and v2
i swing votes.

For every pair of distinct integers 1 ≤ i < j ≤ k we move x′ in v1
i,j such that x beats

a
ID(cicj)
i,j , and move x′ in v2

i,j such that x beats a
ID(cicj)+1
i,j . The number of swaps to do this is

(5M − 3)
(

k
2
)
. Thus the total number of swaps is ((N + 1)(kM + 1) + 2)k + (5M − 3)

(
k
2
)

= k′.
We show that x has gained a swing vote on each non-dummy candidate. It is easy to see

that for every 1 ≤ i ≤ k, the candidate x′ has gained a swing vote on all ap
i ’s and that for

every 1 ≤ i < j ≤ k, x′ has gained a swing vote on all ap
i,j ’s. Observe that in the two swing

votes v1
i,j and v2

i,j , x′ has gained a swing vote on all candidates ei, e′i, ej and e′j except for the
four candidates corresponding to the edge e[i, j] = cicj . Let these four candidates be ei[i, j],
e′i[i, j], ej [i, j] and e′j [i, j] respectively. However, x′ gains a swing vote on ei[i, j] in v1

i , on
e′i[i, j] in v2

i , on ej [i, j] in v1
j and on e′j [i, j] in v2

j . This concludes the proof of the lemma. J

I Lemma 8. If x′ can be made a winner of the election (C ′, V ′, x′, k′) in k′ = ((N +1)(kM +
1) + 2)k + (5M − 3)

(
k
2
)

swaps, then G contains a colored k-clique.

Proof. Observe that for any fixed i we need to perform at least (N + 1)(kM + 1) + 2 swaps
in v1

i and v2
i in total in order to gain a swing vote on all ap

i ’s. Similarly for any fixed
1 ≤ i < j ≤ k we need to perform at least 5M − 3 swaps in v1

i,j and v2
i,j in total, in order to

gain a swing vote on all ap
i,j ’s.

Thus, if strictly more than (N + 1)(kM + 1) + 2 swaps are performed in v1
i and v2

i in total
for some i, or if more than 5M − 3 swaps are performed in v1

i,j and v2
i,j in total for some i, j,

then the total number of swaps performed must be greater than k′ if the swaps make x′ a
Condorcet winner. So under the given assumptions for each i, exactly (N + 1)(kM + 1) + 2
swaps are performed in v1

i and v2
i in total, and for each 1 ≤ i < j ≤ k, exactly 5M − 3 swaps

are performed in v1
i,j and v2

i,j in total.
For a fixed i, if x′ has gained a swing vote for all the ap

i ’s in v1
i and v2

i , then there must be
some ci ∈ Vi such that x′ has been moved right over a

ID(ci)
i in v1

i and right over a
ID(ci)+1
i in

v2
i . Similarly, for every 1 ≤ i < j ≤ k there must be some e[i, j] ∈ Ei,j such that x′ has been
moved right over a

ID(e[i,j])
i,j in v1

i,j and moved right over a
ID(e[i,j])+1
i,j in v2

i,j . Notice that x′ did
not get any swing vote on ei[i, j], e′i[i, j], ej [i, j] and e′j [i, j]. The only other places x′ could
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have gotten a swing vote on these candidates are in v1
i , v2

i , v1
j and v2

j respectively. We prove
that e[i, j] is incident to ci. Let vi be the vertex incident to e[i, j] in Vi. If ID(ci) < ID(vi)
then x′ does not gain a swing vote on e[i, j]i. Hence ID(ci) ≥ ID(vi). If, on the other hand,
ID(ci) > ID(vi) then x′ does not gain a swing vote on e′[i, j]i, and therefore we must have
ID(ci) ≤ ID(vi). But then vi = ci and therefore we know that for each i the vertex ci that
is selected in the votes v1

i and v2
i is an endpoint of the edge that was selected in the votes

v1
i,j and v2

i,j . Using e[i, j]j and e′[i, j]j one can similarly prove that e[i, j] is incident to cj .
Hence C = {c1, c2, . . . , ck} forms a clique in G. This concludes the proof of the lemma. J

The construction of (C ′, V ′, x′, k′) together with Lemmata 7 and 8 shows that there
is a FPT-reduction from Multi-Colored Clique to n-Dodgson Score. Since it is
well-known [17] that Multi-Colored Clique is hard for W [1], we obtain the following
result.

I Theorem 9. n-Dodgson Score is hard for W [1].

5 Conclusions and Discussion

In this paper we answered two open problems with respect to the parameterized complexity
of Dodgson Score. The parameterization k-Dodgson Score does not admit a polynomial
kernel unless the polynomial hierarchy collapses, and n-Dodgson Score is hard for W [1].
The proof that k-Dodgson Score does not have a polynomial kernel unless PH = Σp

3 also
implies that the exponential size kernel by Fellows et al. [16] for k-Generalized Dodgson
Score cannot be improved to a polynomial kernel unless PH = Σp

3.
In a natural variant of the Dodgson Score problem we are given a set of votes over a

set of candidates C, together with an integer k, and asked whether any candidate can be
made a Condorcet Winner by performing at most k swaps. A simple construction extends
the hardness result of Theorems 6 and 9 to this problem as well.
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