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Abstract
This paper focuses on first-order logic (FO) extended by reachability predicates such that the
expressiveness and hence decidability properties lie between FO and monadic second-order logic
(MSO): in FO(R) one can demand that a node is reachably from another by some sequence of
edges, whereas in FO(Reg) a regular set of allowed edge sequences can be given additionally.
We study FO(Reg) logic in infinite grid-like structures which are important in verification. The
decidability of logics between FO and MSO on those simple structures turns out to be sensitive
to various parameters. Furthermore we introduce a transformation for infinite graphs called set-
based unfolding which is based on an idea of Lohrey and Ondrusch. It allows to transfer the
decidability of MSO to FO(Reg) onto the class of transformed structures. Finally we extend
regular ground tree rewriting with a skeleton tree. We show that graphs specified in this way
coincide with those expressible by vertex replacement and product operators. This allows to
extend decidability results of Colcombet for FO(R) to those graphs.
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1 Introduction

The general task in verification is to check whether an infinite graph structure satisfies
a given specification, which is usually expressed by a logical formula in the fundamental
first-order (FO) or monadic second-order (MSO) logic. These logics are well-studied and
over the years many classes of infinite structures have been identified where the theory of
one of these logics is decidable. The most prominent examples are automatic structures
[13, 15, 2] like Presburger arithmetic (N, 0, 1,+) for FO, and natural numbers with successor
(N,S) by Büchi [3] and the binary tree ({0, 1}∗,S1,S2) by Rabin [20] for MSO. In verification
one often specifies properties dealing with reachability in graph structures. These cannot
be expressed in FO logic. One could switch to MSO logic which comes at the expense of
worse decidability properties. To overcome this problem we consider FO logic extended
by reachability predicates. In FO(R) logic these predicates express that some element is
reachable from another by using a subset of the available edge relations. In FO(Reg) logic one
can express reachability by sequences of edge relations which form a regular language. Both
logics lie strictly between FO and MSO according to their expressiveness and decidability.

In Section 3 we mainly study the decidability of FO(Reg) logic on infinite grids. Although
they look simple one can express strong properties by formulas which makes them interesting
for verification. Furthermore FO logic is known to be decidable whereas MSO logic is
undecidable. We consider an n-dimensional grid to be a structure having Nn as domain
and a successor and predecessor relation for each dimension. The decidability of FO(Reg)
logic turns out to be sensitive to the various parameters, which is mostly inherited from
important, closely related formalisms like Petri nets, vector addition systems, pushdown
automata, register machines, and logic over arithmetic. Furthermore we extend studies of
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Wöhrle and Thomas [21] about FO logic extended by an operator for transitive closure,
which reveals interesting parallels to the situation of FO(Reg) logic.

A generic way of generating structures having some particular decidable logic is by
structure transformation. A standard transformation is interpretation where a new structure
is defined by specifying its domain and relations by formulas. It preserves the decidability of
FO or MSO logic, respectively, when the formulas come from this logic. Another approach for
graph structures is unfolding where the new structure is the tree of all finite paths starting in
a given initial vertex in the original structure. This transformation preserves the decidability
of MSO logic [10]. In Section 4 we define set-based unfolding which is an abstraction of
unfolding. It does not preserve the decidability of full MSO logic but FO(Reg) logic is
decidable anyhow. The idea for this transformation goes back to a construction of Lohrey
and Ondrusch [18]. Thus set-based unfolding is such a type of transformation, which maps
the decidability of one particular logic to the decidability of a weaker logic. Another example
of such a transformation is finite set interpretation by Colcombet and Löding [9] which maps
decidability of weak MSO logic to FO logic in the resulting structure.

Lastly in Section 5 we extending an equivalence result for a class of graphs where FO(R)
logic is decidable. The first way to describe this class is by regular ground tree rewriting
(RGTR) systems, where the domain is given as a set of finite trees and edge relations are
induced by rewriting rules which replace a subtree by another. The decidability of FO(R)
logic on RGTR graphs was shown by a transformation to tree automata and tree transducers
[11]. The second formalism is completely differently motivated and describes graphs by
operations on colored graphs: the vertex replacement and product (VRP) operators. Usually
those operators are aligned in a (possibly infinite) tree, called the VRP tree, and specify the
graph which is its least fixed point. Colcombet [7, 8] showed RGTR graphs to be equivalent
to graphs represented by regular VRP trees. He furthermore showed the FO(R) theory to
be decidable for graphs of VRP trees with decidable MSO theory. With this motivation
we extend RGTR to regular skeleton ground tree rewriting (RSGTR) by adding a usually
infinite skeleton tree and obtain the equivalence to graphs of arbitrary VRP trees. The
transformation furthermore preserves decidability of MSO logic of the VRP tree and skeleton
tree, which makes the FO(R) theory of RSGTR graphs decidable if the skeleton has a
decidable MSO theory.

2 Preliminaries

We use the following notations for intervals of integers: Z ∶= (−∞,∞) and N ∶= [0,∞). By
℘(S) we denote the powerset of a set S. Let Σ be an alphabet, i.e., a finite set of symbols,
then Σ∗ is the set of words over Σ, i.e., finite sequences of its symbols, and a language is a set
of words. The number of occurrences of a symbol σ ∈ Σ in a word w is ∣w∣σ ∈N, the length
of w is ∣w∣ ∈N and the empty word ε is the word of length ∣ε∣ = 0. We assume the reader to
be familiar with regular languages, i.e., the languages specified by regular expressions or
equivalently by finite automata.

A structure A = (A, (fi)i∈f, (Ri)i∈R) consists of a (possibly infinite) domain A, functions
fi ∶ Ani → A and relations Ri ⊆ Ami each of arity ni and mi, respectively. A relational
structure has only relations, and it is a graph structure if all relations are of arity 1 or 2. We
consider only structures with finitely many functions and relations. An equivalence relation
∼ ⊆ A ×A is a congruence on a relational structure A = (A, (Ri)i∈R) if Ri(x1, . . . , xmi) ⇔
Ri(y1, . . . , ymi) for all Ri and x1 ∼ y1, . . . , xmi ∼ ymi . Its quotient A/∼ = (A′, (R′

i)i∈R)
is defined as A′ ∶= { [x] ∣ x ∈ A} and ([x1], . . . , [xmi]) ∈ R′

i ∶⇔ (x1, . . . , xmi) ∈ Ri with
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[x] ∶= { y ∣ y ∼ x}.
With first-order (FO) logic one can specify properties of a structure by using terms of

variables (x, y, z, . . .) and functions (fi), comparing terms (=,Ri), quantifying elements (∃,∀)
and its boolean combinations (¬,∧,∨,→). Monadic second-order (MSO) logic additionally
allows quantification over element sets (X,Y,Z, . . .) and using them as unary relations. Weak
MSO (WMSO) logic is a variant which only quantifies over finite sets. The theory of a
logic and a structure is the set of formulas of that logic which have no free variables and
hold in the structure. The property that an element can be reached from another in some
graph structure can be expressed in MSO and WMSO logic but not in FO logic. For a
graph structure G = (V, (Pγ)γ∈Γ, (Eσ)σ∈Σ) we define FO(Reg) logic to be the extension of FO
logic by regular reachability predicates reachL(x, y), for variables x, y and a regular language
L ⊆ Σ∗ (finitely represented by a regular expression or finite automaton), meaning that
position y can be reached from position x by some sequence of edges Eσ1 , . . . ,Eσn such that
σ1⋯σn ∈ L. Let FO(R) logic be its restriction to simple reachability predicates reachΣ∗0(x, y)
with Σ0 ⊆ Σ. Reachability predicates can be expressed in MSO and WMSO logic by induction
on the operators of a regular expression for the language of the predicate. It uses the fact
that the transitive closure is expressible in MSO and WMSO. The expressiveness of the
above logics increases as follows:

FO ≤ FO(R) ≤ FO(Reg) ≤ { MSO
WMSO

Note that WMSO is usually a sublogic of MSO since finiteness is MSO-definable in most
standard structures. FO(Reg) logic over G can furthermore be identified with FO logic over
(V, (Pγ)γ∈Γ, (EL)L⊆Σ∗,L regular), i.e., reachability is considered only with respect to the edge
relations instead of arbitrary FO-definable relations (analogous for FO(R) logic).

3 Reachability in Infinite Grids

We consider the n-dimensional infinite grid Nn ∶= (Nn, (Si, S̄i)1≤i≤n) to be the n-th product
of the natural numbers N = (N,S, S̄) with successor and predecessor, i.e., Si and S̄i are the
successor and predecessor relation of dimension i. The MSO theory is known to be decidable
for N [3] but undecidable for its products. By using Büchi’s result about the decidability of
Presburger arithmetic, i.e., the FO theory of (N,0,1,+), one can easily see that the FO(R)
theory is decidable for grids Nn of any dimension n. For this reason we study the situation
for FO(Reg) logic, which reveals an interesting phenomenon.

▸ Theorem 1. The FO(Reg) theory of N 2 is decidable.

Proof. We reduce this theory to Presburger arithmetic. To this end we transform a given
FO(Reg) formula over N 2 into an equivalent Presburger formula by interpreting each grid
position x = (x1, x2) ∈ N2 as numbers x1, x2 ∈ N. Then the standard FO operators can be
transformed straightforward. It remains to express a reachability predicate reachL(x, y) as
Presburger formula, which we will do by use of vector addition systems with states (VASS).

A 2-dimensional VASS V = (Q,∆) consists of a finite state set Q and a finite transition
relation ∆ ⊆ Q × Z2 × Q. For states p, q ∈ Q we define the reachability relation Rp,q ⊆
(N2)2 consisting of all (x, y) ∈ (N2)2 such that there exist sequences z0, . . . , zk ∈ N2 and
(q0, d0, q1), . . . , (qk−1, dk, qk) ∈ ∆ with x = z0, zk = y, p = q0, qk = q and zi = zi−1 + di for all
i ∈ {1, . . . , k}. For a reachability predicate reachL(x, y) with language L = L(A) of some
automaton A = (Q,{S1, S̄1,S2, S̄2}, δ, q0, F ) we define the VASS (Q,∆) with (p, ei, q) ∈ ∆ iff
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S1

S2

x=2 y=3 z=5

(y, y) (x+y, y)

0

(S1⋅S2)
∗

S∗2

(S1⋅S2)
∗

S∗1

S∗2

(a) Geometric addition x + y = z

S2

S3

n=40

t(4) = 10

(b) Geometric multiplication simulated
by the function t(n) ∶= n ⋅ (n + 1) ÷ 2

Figure 1 Arithmetic in the grid by: simulating addition and multiplication

δ(p,Si) = q, and (p,−ei, q) ∈ ∆ iff δ(p, S̄i) = q where e1 ∶= (1,0) and e2 ∶= (0,1). It is obvious
from the construction, that for x, y ∈ N2 in the grid reachL(x, y) holds iff (x, y) ∈ Rq0,qf

for some qf ∈ F . Now we can make use of a result from Leroux and Sutre [16], stating
that for any two states p, q of a 2-dimensional VASS the reachability relation Rp,q ⊆ (N2)2

is semi-linear (when identifying (N2)2 with N4), i.e., a finite union of linear sets. Hence,
⋃qf ∈F Rq0,qf

is the relation defined by reachL(x, y), which is still semi-linear (over N4). This
finishes the proof since semi-linear sets are effectively equivalent to the sets definable in
Presburger arithmetic [12]. ◂

If we consider the simpler model of the grid Nn
+ = (Nn, (Si)1≤i≤n) with only successor

relations Si, then the FO(Reg) theory is decidable for any dimension. This can be proven
similarly to the above theorem by reducing a reachability predicate reachL(x, y) to its Parikh
image { (∣w∣S1 , . . . , ∣w∣Sn) ∣ w ∈ L} ⊆ Nn, i.e., the tuples of occurrences of each symbol in
words of L, which is effectively semi-linear for any n [19]. On the other hand the proof of
Theorem 1 cannot be extended to dimension 3 as in this case the semi-linearity is not present
any longer [14]. The next result shows the sharpness of Theorem 1.

▸ Theorem 2. The FO(Reg) theory of N 3 is undecidable.

Proof. We reduce the FO arithmetic, i.e., the FO theory of (N,0,1,+, ⋅), which is known
to be undecidable, to the considered theory. Thus we transform a given FO formula over
the arithmetic into an equivalent FO(Reg) formula over N 3 by encoding a number n ∈N as
grid position (n,0,0) ∈N3. W.l.o.g. we treat the arithmetic as relational, i.e., with relations
0,1 ⊆ N1 and +, ⋅ ⊆ N3. It is easy to transform the standard FO operators as well as the
relations 0 and 1. Thus only the relations + and ⋅ are remaining.

The addition x+ y = z can be defined geometrically in the grid as motivated in Fig. 1a by
finding intersection points along horizontal, vertical and diagonal lines:

ψ+(x, y, z) ∶= ∃y′, z′ (reach(S1 ⋅S2)∗(0, y
′) ∧ reachS∗2

(y, y′) ∧
reach(S1 ⋅S2)∗(x, z

′) ∧ reachS∗2
(z, z′) ∧ reachS∗1

(y′, z′)).

We reduce the multiplication to addition and the triangle function t(n) ∶= n ⋅ (n + 1) ÷ 2
since x ⋅ y = z iff t(x + y) = t(x) + t(y) + z. Figure 1b geometrically motivates t(n) =
∣{ (i, j) ∈N2 ∣ i + j < n}∣ as the number of positions in the triangle below (n, 0) in the plane.
It further shows a path along the counterdiagonals with length exactly t(n). To lift the input
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from (n,0,0) to the starting point (0, n,0) in the plane of the second and third dimension,
we have to swap the position of the input n ∈ N, which is done by a path of the language
L′ ∶= (S̄1 ⋅ S2)∗. Then the counterdiagonal path can be described by the language

L′′ ∶= ((S1 ⋅ S̄2) ⋅ (S1 ⋅ S̄2 ⋅ S3)∗ + (S1 ⋅ S̄3) ⋅ (S1 ⋅ S2 ⋅ S̄3)∗)
∗

where the first dimension is used to count the length of the path. Now we can define t(n) to
be the maximal first component that is reachable by L ∶= L′ ⋅L′′ from (n,0,0):

ψt(x, y) ∶= reachL(x, y) ∧ ∀y′ (reachL(x, y′) → reach(S1+S̄2+S̄3)∗
(y′, y)).

This guarantees that the path turns only at border positions, i.e., from x = (n,0,0) one
reaches (0, n,0) by L′ and then y = (t(n),0,0) by L′′. For the correctness it is obvious that
n ≤ t(n) for all n ∈N, and that taking a shortcut in L′ or L′′ yields a smaller result. ◂

By a reduction to the FO arithmetic, we showed the FO(Reg) theory of N 3 to be highly
undecidable as well: each set of the arithmetical hierarchy (which consists of the sets definable
in FO arithmetic) can be reduced to it. This fact makes it surprising that the same logic is
decidable in the 2-dimensional case (cf. Theorem 1) anyhow. The hardness is introduced by
the limitation of natural numbers, i.e., the boundedness in one direction. One can easily show
the FO(Reg) theory of the grid Zn ∶= (Zn, (Si, S̄i)1≤i≤n) to be decidable by using Parikh
images again.

We end this section with a digression on FO(TC)(1), i.e., FO logic extended by an operator
for the transitive closure (TC) of FO(TC)(1)-definable binary relations. Here we consider two
variants which are powerful enough: FO(TC)1

(1) is FO logic with TC only for FO-definable
relations, and FO(TC)2

(1) is FO logic with TC only for FO(TC)1
(1)-definable relations, i.e.,

the TC operator can not be nested, or at most once, respectively. Their expressiveness stays
below MSO and WMSO on grid structures (without proof):

FO ≤ FO(R) ≤ { FO(Reg)
FO(TC)1

(1)
} ≤ FO(TC)2

(1) ≤ FO(TC)(1) ≤ { MSO
WMSO

Wöhrle and Thomas [21] studied the decidability of these logics on the 2-dimensional grid.
They showed the FO(TC)1

(1) theory of N 2 to be decidable by a reduction to Presburger
arithmetic, and the FO(TC)2

(1) theory of N 2 to be highly undecidable by reducing FO
arithmetic. By copying the proof of Theorem 2 one can furthermore show the FO(TC)1

(1)
theory of N 3 to be highly undecidable as well. It is interesting to observe the same
phenomenon that the logic changes from being decidable to highly undecidable between
dimension 2 and 3.

4 Set-Based Unfolding

The unfolding (or unraveling) Unfv0(G) of a graph structure G is a tree, the vertices of which
are finite paths of G starting at the initial vertex v0. The relations are inherited from G:
unary relations are set according to the last vertex of a path, and edge relations are used to
extend paths, i.e., following an edge of the last vertex. Courcelle and Walukiewicz [10] have
shown that Unfv0(G) preserves the decidability of MSO logic of G for any initial vertex v0
that is MSO-definable in G.

We present a model-theoretic structure transformation which is similar to the unfolding
and preserves some logic decidability too. Instead of having finite paths as domain, we
abstract each such path v0Eσ1v1 . . .Eσnvn to the trace (vn,{v0, v1, . . . , vn}), in which vn is
the last vertex and {v0, v1, . . . , vn} is the (finite) set of visited vertices of the path:
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(0,{0}) ⋯

⋯

⋯

⋯

(1,{0, 1})

(0,{0, 1})

(−1,{−1, 0})

(0,{−1, 0}) (1,{−1, 0, 1})

(0,{−1, 0, 1})

(−1,{−1, 0, 1})

P0

P0

P0

P0

S
S̄

S
S̄

S
S̄

S
S̄

S S

S S
S̄

S̄

S̄

S̄

Figure 2 Set-based unfolding SetUnf0(Z) of the structure Z = (Z, P0,S, S̄)

▸ Definition 3. Let G = (V, (Pγ)γ∈Γ, (Eσ)σ∈Σ) be a graph structure with unary and binary
relations Pγ and Eσ, respectively. For some set of initial traces I ⊆ V × ℘(V ), i.e., for each
(v, V0) ∈ I: V0 is finite and v ∈ V0, the set-based unfolding SetUnfI(G) of G from I is the
graph structure (V ′, (P ′

γ)γ∈Γ, (E′
σ)σ∈Σ) with

1. domain V ′ ⊆ V × ℘(V ) being the smallest set of traces which contains I, and for all
σ, v, v′, V0 if (v, V0) ∈ V ′ and (v, v′) ∈ Eσ then (v, V0 ∪ {v′}) ∈ V ′,

2. predicates (v, V0) ∈ P ′
γ iff v ∈ Pγ , and

3. edges ((v, V0), (v′, V ′
0)) ∈ E′

σ iff (v, v′) ∈ Eσ and V ′
0 = V0 ∪ {v′}.

We abbreviate SetUnfv0(G) for SetUnf{(v0,{v0})}(G) with the initial trace (v0,{v0}) rep-
resenting some v0 in G. Note that SetUnfv0(G) may not be a tree in contrast to Unfv0(G):

▸ Example 4 (Free group and free inverse monoid). Consider the graph structure Z =
(Z, P0,S, S̄) with unary relation for 0, successor and predecessor relation, which is isomorphic
to the free group FG({S}) of the singleton alphabet {S}. Its set-based unfolding SetUnf0(Z)
from vertex 0 yields the structure depicted in Fig. 2, which is isomorphic to the free inverse
monoid FIM({S}) of the same alphabet.

▸ Theorem 5. The FO(Reg) theory of a quotient SetUnfI(G)/∼ is decidable, if the MSO
theory of the graph G is decidable and the set I of initial traces, the congruence ∼, as well as
finiteness are MSO-definable in G.

Proof. This proof is based on one from Lohrey and Ondrusch [18]. It goes by interpretation,
i.e., each FO(Reg) formula ϕ over SetUnfI(G)/∼ can be transformed effectively into an
equivalent MSO formula ϕ̂ over G. Thereby each trace of SetUnfI(G) is encoded in G by a
tuple (x,X) of a position and a set variable. Given formulas ψI(x,X) for the initial traces,
and ψ∼(x,X, y, Y ) for the congruence, we define the transformation ϕ̂ of ϕ inductively:

x̂ = y ∶= ψ∼(x,X, y, Y ) ¬̂ϕ ∶= ¬ϕ̂
P̂γ(x) ∶= Pγ(x) ϕ̂ ∨ ψ ∶= ϕ̂ ∨ ψ̂
̂Eσ(x, y) ∶= ̂reachσ(x, y) ∃̂xϕ ∶= ∃x∃X (ϕ̂ ∧ ψdom(x,X))

̂reachL(x, y) ∶= ∃y′ ∃Y ′, Z (ReachL(x, y′, Z) ∧ (Y ′ =X ∪Z) ∧ ψ∼(y, Y, y′, Y ′) ∧ ψdom(y′, Y ′))
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where ψdom(x,X) ∶= ∃y ∃Y,Z (ψI(y, Y ) ∧ ReachΣ∗(y, x,Z) ∧ (X = Y ∪ Z)) is the domain
formula, and ReachL(x, y,Z) is an extended reachability predicate stating that y is reachable
from x by a path labeled by some word in L and exactly visiting the vertices Z, which was
shown to be MSO-definable [18] since finiteness is MSO-definable in G. The transformation
of the reachability predicate is correct since the congruence ∼ also applies to finite paths,
and hence reachability, i.e., (x,X) reaches (y, Y ) by some edge sequence iff (x′,X ′) reaches
(y′, Y ′) by the very same sequence for all traces (x,X) ∼ (x′,X ′), (y, Y ) ∼ (y′, Y ′). ◂

The main result is a simpler version of this theorem with equality as trivial congruence:

▸ Corollary 6. The FO(Reg) theory of SetUnfv0(G) is decidable if the MSO theory of the
graph G is decidable and the vertex v0, as well as finiteness are MSO-definable in G.

This reads similar to the preservation of MSO-decidability for unfolding [10] although it is
a weaker result. On the other hand Example 4 demonstrates the sharpness of Corollary 6. The
structure Z = (Z, P0,S, S̄) has a decidable MSO theory [3] and finiteness is MSO-definable in
Z. Thus SetUnf0(Z) has a decidable FO(Reg) theory whereas the MSO theory is undecidable
(by interpretation of the infinite grid [4]). Note that the results of this section also apply to
WMSO, respectively. A good usage of set-based unfolding would be the Caucal hierarchy
[6], which is a strict hierarchy of graph structures obtained by alternately unfolding and
MSO-interpreting the class of finite graphs1, since all such graphs have decidable MSO and
WMSO theories [6, 17].

5 Regular Ground Tree Rewriting with Skeleton

We are dealing with trees over a ranked alphabet Σ, i.e., each symbol f ∈ Σ has a certain
arity or rank ∣f ∣ ∈ N. A tree t = f(t1, . . . , t∣f ∣) has a symbol f ∈ Σ at its root and each ti
is a tree again. We can view t as a (partial) function, which maps its domain dom(t) ∶=
{ε} ∪ ⋃1≤i≤∣f ∣ (i ⋅ dom(ti)) ⊆ N∗ to Σ with t(ε) ∶= f and t(i ⋅w) ∶= ti(w) for 1 ≤ i ≤ ∣f ∣. The
subtree t∣v of t at a position v ∈ dom(t) is defined as t∣v(w) = t(v ⋅ w). A tree is infinite
if its domain is infinite, and it is furthermore regular if it has only finitely many different
subtrees. We can view t also as a graph structure (dom(t), (Ei)1≤i≤∣f ∣,f∈Σ, (Pf)f∈Σ) with
Ei ∶= { (w,w ⋅ i) ∣ w ⋅ i ∈ dom(t) } and Pf ∶= {w ∣ t(w) = f }. TΣ (T fin

Σ ) denotes the set of
(finite) trees over Σ. Subsets of TΣ are called tree languages. Analogous to words we use
automata to specify languages of finite trees. A tree automaton A = (Q,Σ, (∆f)f∈Σ, F )
consists of a finite state set Q with some accepting states F ⊆ Q, a finite ranked alphabet
Σ and transition relations ∆f ⊆ Q ×Q∣f ∣ for each f ∈ Σ. A finite tree t ∈ T fin

Σ is in the tree
language T (A) recognized by A if there exists a run ρ ∶ dom(t) → Q, which is accepting,
i.e., ρ(ε) ∈ F , and which respects ∆, i.e., (ρ(r), ρ(r ⋅ 1), . . . , ρ(r ⋅ ∣f ∣)) ∈ ∆f for each position
r ∈ dom(t) with t(r) = f . We call A bottom-up deterministic if for all f ∈ Σ, (q1, . . . , q∣f ∣) ∈ Q∣f ∣

there is at most one q ∈ Q with (q, q1, . . . , q∣f ∣) ∈ ∆f . A is top-down deterministic if ∣F ∣ = 1
and for all f ∈ Σ, q ∈ Q there is at most one (q1, . . . , q∣f ∣) ∈ Q∣f ∣ with (q, q1, . . . , q∣f ∣) ∈ ∆f .
Tree languages recognizable by a bottom-up deterministic (top-down deterministic) tree
automata are called regular (top-down deterministic recognizable).

A regular ground tree rewriting (RGTR) system (T,Σ,A,→) consists of a top-down
deterministic recognizable domain T ⊆ T fin

Σ and finitely many rewriting rules L aÐ→ R with

1 In [6] Caucal actually defined the hierarchy with inverse rational mappings instead of MSO interpretation,
which is shown to be equivalent [5].
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regular tree languages L,R ⊆ T fin
Σ and label a ∈ A. It defines a graph structure with T as

vertices, and a-labeled edges between trees t, t′ ∈ T if there is some rule L aÐ→ R such that t′
is obtained by replacing one subtree l ∈ L in t by r ∈ R. Furthermore there is a constant for
each tree. Dauchet and Tison [11] have shown that the FO(R) theory is decidable for RGTR
graphs (T,Σ,A,→) with complete domain T = T fin

Σ and rules of the form {l} aÐ→ {r} with only
singletons. The proof uses a translation to tree transducers and tree-automatic relations,
such that one can actually extend the proof to general RGTR graphs. This result cannot be
extended to higher logics like FO(Reg) or FO(TC)1

(1) since we showed these theories to be
undecidable on N 3 and grids are some of the simplest structures representable by ground
tree rewriting:

▸ Example 7 (Infinite grid). Let (T,Σ,A,→) be an RGTR system over the ranked al-
phabet Σ = {2,1,0L,0R}, each symbol having the arity according to its number, with
T = {2(1x(0L),1y(0R)) ∣ x, y ∈N}, labels A = {S1,S2}, and rewriting rules 0L

S1Ð→ 1(0L),
0R

S2Ð→ 1(0R). Its graph is isomorphic to the infinite grid N 2
+ = (N2,S1,S2).

An algebraically motivated way of specifying infinite graphs is vertex replacement with
product (VRP) [7, 8] where graphs are the least fixed point of equations of operations
on colored graphs. These are structures G = (V, (Pc)c∈C , (Ea)a∈A) with (possibly infinite)
domain of colored vertices V = ⊎c∈C Pc and edge relations Ea for a finite set C of colors and
A of actions. The family of those graphs is called GA,C . For the following let us fix some sets
actions A and colors C. The five VRP operators on colored graphs are
1. Constant singleton graph: ċ ∶ GA,C0 → GA,C , just one vertex having color c ∈ C,
2. Recoloring: [φ] ∶ GA,C1 → GA,C , for some color mapping φ ∶ C → C,
3. Adding edges: [c a⊳⊲ d] ∶ GA,C1 → GA,C , labeled by a ∈ A between colors c, d ∈ C,
4. Disjoint union: ⊕ ∶ GA,C2 → GA,C , and
5. Asynchronous product: ⊗η ∶ GA,C2 → GA,C , for a function η ∶ C2 → C merging the colors2.
To specify an infinite graph we use a (possibly infinite) term of VRP operators called VRP
tree, i.e., a tree over the ranked alphabet ΩA,C consisting of the VRP operators ċ, [φ], [c a⊳⊲ d],
⊕, ⊗η with arities 0, 1, 1, 2, 2, respectively. The interpretation ⟦t⟧ of a VRP tree t ∈ TΩA,C

is
defined as its least fixed point according to the subgraph relation3. This is a complete partial
order with the empty graph as least element, which guarantees the existence of a unique
least fixed point ⟦t⟧ that furthermore is equal to the supremum of the chain ⟦t⟧0 ⊆ ⟦t⟧1 ⊆ ⋯
where ⟦t⟧d is the partial interpretation up to depth d ∈ N, i.e., ⟦t⟧0 = � (the empty graph)
and ⟦f(t1, . . . , tn)⟧d+1 = f(⟦t1⟧d, . . . , ⟦tn⟧d) with VRP operator f ∈ ΩA,C .

▸ Example 8 (Infinite grid). Let A = {S1,S2}, C = {0,1,2}, and the VRP tree t as follows
(depicted in Fig. 3):

t ∶= t1 ⊗[(c,d)↦0] t2, ti ∶= [0 Si⊳⊲ 1](0̇ ⊕ [0↦1
1↦2
2↦2

] ti) for i ∈ {1,2}.

The interpretation ⟦t⟧ of t is isomorphic to N 2
+ = (N2,S1,S2) when ignoring colors.

Colcombets main results are, that interpretations of regular VRP trees are effectively
equivalent to RGTR graphs (up to isomorphism and color removal), and that the FO(R)
theory of an interpretation is decidable if the VRP tree has a decidable MSO theory [7]. We

2 The asynchronous product ⊗η has a fixed function η in [7]; and is called ◻η in [8].
3

(V, (Pc)c∈C , (Ea)a∈A) ⊆ (V ′, (P ′c)c∈C , (E
′
a)a∈A) if V ⊆ V ′, Ea ⊆ E′a, and Pc ⊆ P ′c for each a ∈ A, c ∈ C.
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⊗[(c,d)↦0]

[0
S2
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

]
[0

S2
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

] ⋯

[0
S1
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

]
[0

S1
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

] ⋯

Figure 3 VRP tree defining the infinite grid N 2
+ = (N2,S1,S2)

are going to remove the regularity demand from the equivalence result by making RGTR
as powerful as VRP trees in general. To this end we equip RGTR with a (usually infinite)
tree, which functions as a skeleton for the specification of the domain and the rewriting rules.
This concept is based on the overlay t∥s of trees t ∶ dom(t) → Σ and s ∶ dom(s) → Γ with

t∥s ∶ dom(t) → Σ∥Γ, t∥s(w) ∶=
⎧⎪⎪⎨⎪⎪⎩

(t(w), s(w)) if w ∈ dom(s),
(t(w),�) otherwise

with overlay alphabet Σ∥Γ ∶= Σ×(Γ⊎{�}) of rank ∣(f, g)∣ ∶= ∣f ∣. We write T ∥s ∶= { t∥s ∣ t ∈ T }.

▸ Definition 9. A regular skeleton ground tree rewriting (RSGTR) system (s,Γ, T,Σ,A,→)
consists of a skeleton s ∈ TΓ, i.e., a tree over the ranked alphabet Γ, such that (T,Σ∥Γ,A,→)
forms an RGTR system. The graph structure it defines is the graph of the RGTR system
(T,Σ∥Γ,A,→) restricted to T fin

Σ ∥s, i.e., trees where the overlaid component corresponds to
the skeleton tree s ∈ TΓ.

▸ Theorem 10. VRP interpretations are effectively equivalent to RSGTR graphs (up to
isomorphism and color removal). Furthermore the conversion between the VRP tree and the
skeleton tree preserves the decidability of MSO logic and regularity.

Proof. The first part is the direction from VRP trees to RSGTR systems. Consider a given
VRP tree t ∈ TΩA,C

. We can simulate it by an RSGTR system (depending only on A and C)
with t as skeleton. From the definition of the interpretation via chains, it follows that each
node of the interpretation is represented by exactly one finite prefix of t. This is a part of t
starting from the root, such that for each vertex with label f ∈ ΩA,C of the prefix:
1. if f ∈ {[φ], [c a⊳⊲ d]} then the (unique) child has to belong to the prefix as well,
2. if f = ⊕ then either the left or the right child belongs to the prefix, and
3. if f = ⊗η then both children belong to the prefix.
Figure 4 depicts (when ignoring the numbers below the vertices) such a finite prefix of the
infinite VRP tree of Fig. 3. Those prefixes form a deterministic top-down recognizable set
when using the overlay alphabet Σ∥ΩA,C

with Σ ∶= {0,1,2,2L,2R}, each symbol having its
number as rank. Then use 0 for constants, 1 for unary operators, 2 for products, and 2L, 2R
for the left and right branches of disjoint unions, respectively.

To simulate the edges as introduced by the edge adding operators of t we have to look
at the coloring of vertices. The colors of a prefix can be computed easily in a bottom-up
manner for each subtree such that the color of each subtree corresponds to the color of the
vertex which is VRP-represented by that very subtree. Starting by copying the constant
colors at the leaves, the computation simply merges at each subtree the colors of its children
according to the semantic of the considered operator. In Fig. 4 the colors are written next to
each vertex. If a subtree is labeled by an operator [c a⊳⊲ d] and has color c assigned to it then
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⊗[(c,d)↦0]

[0
S2
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

]
[0

S2
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

] ⋯

[0
S1
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

]
[0

S1
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

] ⋯

0

001
11

0

0 0

0

Figure 4 A finite prefix of the VRP tree of Fig. 3 representing grid position (1,0)

it can be rewritten to another one of color d. In Fig. 4 this means that there would be an
S2-labeled transition from the subtree with operator [0 S2⊳⊲ 1] and color 0 to another subtree
of color 1, which can only lead to the prefix where the paths at both children are of the same
length, i.e., grid position (1, 1). This can be implemented by regular rewriting rules over the
overlay alphabet Σ∥ΩA,C

. We skip the exact definition, since it is easy but purely technical
and does not bring any deeper insight than the explanation above. The MSO-decidability
and regularity are preserved trivially since we chose t itself to be the skeleton.

Showing the converse is a bit more challenging. Consider a given RSGTR system
(s,Γ, T,Σ,A,∆). To finish the proof we define a transformation of s into a VRP tree t whose
structure mimics s and T in a top-down manner, whereas the definition of ∆ is simulated
bottom-up in its colors. Let T be specified by a deterministic top-down tree automaton
A = (Q,Σ∥Γ, (δf)f∈Σ∥Γ

, q0), and let ∆ be represented by both the deterministic bottom-up
tree automaton A′q = (Q′,Σ∥Γ, (δ′f)f∈Σ∥Γ

,{q}) and the relation ∆′ ⊆ Q′ ×A ×Q′, such that
l ∈ L, r ∈ R for some rule L aÐ→ R of ∆ iff l ∈ T (Ap), r ∈ T (Aq) for some (p, a, q) ∈ ∆′. This
alternative representation of the transitions can be obtained by a product construction of
the automata in the rules of ∆. The transformation mentioned above is the composition of
the following tree transformations, each of which has the desired preservation properties:
1. For simplicity we first extend s ∈ TΓ to an infinite m-ary tree s′ ∈ TΓ′ where m ∶=

max { ∣f ∣ ∣ f ∈ Σ} is the maximal rank of Σ, each symbol of Γ′ ∶= Γ⊎{�} has rank m, and
s′(w) ∶= s(w) if w ∈ dom(s), or s′(w) ∶= � otherwise. Then t∥s = t∥s′ for each t ∈ TΣ.

2. The actual work is done by transforming s′ ∈ TΓ′ into a relaxed VRP tree t′ ∈ TΩ′
A,C

where
Ω′
A,C is like ΩA,C but the operators ⊕ and ⊗η are lifted to their n-ary correspondents
⊕i∈{1,...,n} and ⊗η with η ∶ Cn → C for bounded n ∈ N. We set actions A as in A′ and
the colors C ∶= Q′. We transform s′ into t′ ∶= ⌊s′⌋q0 with q0 ∈ Q from A where ⌊s′⌋q for
each q ∈ Q and tree s′ = g′(s′1, . . . , s′m) ∈ TΩ′

A,C
is defined as the (unique) tree

⌊s′⌋q ∶= ⋯[p′ a⊳⊲ q′]⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

for each
(p′,a,q′)∈∆′

⊕
δ(f,g′)(q)=

(p1,...,p∣f ∣)

⎛
⎝⊗ δ′

(f,g′)
(⌊s′1⌋p1 , . . . , ⌊s′∣f ∣⌋p∣f ∣

)
⎞
⎠
.

When ignoring everything that deals with colors in this construction, one can verify that
this defines just the domain T by top-down simulating A with respect to the skeleton s.
When just looking at the colors, then they exactly simulate The bottom-up behavior of A′
is exactly simulated by the colors, where we use the relation ∆′ to specified by transitions
of A′. The way the transformation is defined allows the preservance of regularity and
MSO-decidability.

3. Finally we transform t′ ∈ TΩ′
A,C

into t ∈ TΩA,C′
by simply reducing the n-ary operators

⊕,⊗η to their binary versions ⊕,⊗η or constants (for empty products). In general large
products require the introduction of new colors C ′ for n-tuples of old colors C. ◂
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The restriction of Theorem 10 to regular trees, this yields exactly Colcombet’s equivalence
result [7], since a regular skeleton tree can already be simulated by the domain of an RGTR
system. By combining Theorem 10 with the other main result of Colcombet we can lift the
decidability of the FO(R) theory from RGTR to RSGTR:

▸ Corollary 11. The FO(R) theory of an RSGTR graph is decidable if the skeleton tree has
a decidable MSO theory.

6 Conclusion

Let us summarize the main results of this work about FO logic extended by reachability.
We have classified the decidability of FO(Reg) logic on infinite grids where the boundary of
decidability turned out to be between dimension 2 and 3 (Theorems 1 and 2). By set-based
unfolding we have introduced a new graph transformation which does not preserve the
decidability of MSO logic but still transfers it to a decidable FO(Reg) logic on the unfolded
graph (Corollary 6). By extending RGTR systems with a skeleton tree we have given an
automaton-based formalism with the same expressive power as VRP trees (Theorem 10).
One can furthermore reduce FO(Reg) logic on the graphs of those systems to MSO logic on
its skeleton tree (Corollary 11).

Besides these results there still remain open questions. From graphs with decidable
MSO theory we can generate members of the family of graphs having decidable FO(Reg)
theories by set-based unfolding. Although not proven, we suppose that this family contains
more graphs than obtainable in this way. And if so, how can this family be characterized?
Furthermore it is known that interpretations of regular VRP trees are equivalent to RGTR
graphs [7] whereas interpretations of regular VR trees (without the product operation) are
equivalent to prefix recognizable graphs [1]. Which subclass of RSGTR graphs is described
by interpretations of (possibly irregular) VR trees with decidable MSO theory?
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